Dmitri Bessarabov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785166/publications.pdf

Version: 2024-02-01

		109137	88477
159	5,737	35	70
papers	citations	h-index	g-index
163	163	163	5083
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogen storage. , 2022, , 455-486.		23
2	Si, P, S and Se surface additives as catalytic activity boosters for dehydrogenation of methylcyclohexane to toluene - A liquid organic hydrogen carrier system: Density functional theory insights. Materials Chemistry and Physics, 2022, 279, 125728.	2.0	11
3	First principles evaluation of the OER properties of TMâ^'X (TMÂ=ÂCr, Mn, Fe, Mo, Ru, W and Os, and XÂ=ÂF) Tj I	т <u>о</u> д1 1 0).784314 rg <mark>BT</mark>
4	Modified Pt $(2\ 1\ 1)$ and $(3\ 1\ 1)$ surfaces towards the dehydrogenation of methylcyclohexane to toluene: A density functional theory study. Applied Surface Science, 2022, 584, 152590.	3.1	5
5	On-Demand Hydrogen Generation by the Hydrolysis of Ball-Milled Aluminum–Bismuth–Zinc Composites. Materials, 2022, 15, 1197.	1.3	18
6	The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation. Energies, 2022, 15, 2356.	1.6	15
7	Preparation of Pt/Ce–Zr–Y mixed oxide/anodized aluminium oxide catalysts for hydrogen passive autocatalytic recombination. International Journal of Hydrogen Energy, 2022, 47, 12726-12738.	3.8	10
8	The Use of Hydrogen as a Potential Reductant in the Chromite Smelting Industry. Minerals (Basel,) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
9	A Promising Catalyst for the Dehydrogenation of Perhydro-Dibenzyltoluene: Pt/Al2O3 Prepared by Supercritical CO2 Deposition. Catalysts, 2022, 12, 489.	1.6	6
10	Preparation of Highly Active and Thermally Conductive Platinum Nanoparticle/Ce–Zr–Y Mixed Oxide/AAO Washcoat Catalyst for Catalytic Hydrogen Combustion Technologies. ACS Applied Nano Materials, 2022, 5, 8161-8174.	2.4	7
11	Supported Ir-Based Oxygen Evolution Catalysts for Polymer Electrolyte Membrane Water Electrolysis: A Minireview. Energy & Dels, 2022, 36, 6613-6625.	2.5	14
12	Recent Advances in Membrane-Based Electrochemical Hydrogen Separation: A Review. Membranes, 2021, 11, 127.	1.4	39
13	Effect of supercapacitors on the operation of an air-cooled hydrogen fuel cell. Heliyon, 2021, 7, e06569.	1.4	6
14	The Effect of Mg and Zn Dopants on Pt/Al2O3 for the Dehydrogenation of Perhydrodibenzyltoluene. Catalysts, 2021, 11, 490.	1.6	17
15	On-demand hydrogen generation by the hydrolysis of ball-milled aluminum composites: A process overview. International Journal of Hydrogen Energy, 2021, 46, 35790-35813.	3.8	38
16	A Thermally Conductive Pt/AAO Catalyst for Hydrogen Passive Autocatalytic Recombination. Catalysts, 2021, 11, 491.	1.6	20
17	Hydrogen Separation and Purification from Various Gas Mixtures by Means of Electrochemical Membrane Technology in the Temperature Range 100–160 °C. Membranes, 2021, 11, 282.	1.4	32
18	CO Preferential Oxidation in a Microchannel Reactor Using a Ru-Cs/Al2O3 Catalyst: Experimentation and CFD Modelling. Processes, 2021, 9, 867.	1.3	3

#	Article	IF	CITATIONS
19	Effect of a ripple current on the efficiency of a PEM electrolyser. Results in Engineering, 2021, 10, 100216.	2.2	21
20	Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies. Energies, 2021, 14, 4897.	1.6	22
21	The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation. Membranes, 2021, 11, 670.	1.4	2
22	Two-phase mass transfer in porous transport layers of the electrolysis cell based on a polymer electrolyte membrane: Analysis of the limitations. Electrochimica Acta, 2021, 387, 138541.	2.6	12
23	Density functional theory studies of transition metal doped Ti3N2 MXene monolayer. Computational Materials Science, 2021, 197, 110613.	1.4	15
24	Low-temperature water electrolysis., 2021,, 17-50.		3
25	Stability of ionic-covalently cross-linked PBI-blended membranes for SO2 electrolysis at elevated temperatures. International Journal of Hydrogen Energy, 2020, 45, 2447-2459.	3.8	1
26	Catalytic dehydrogenation onset of liquid organic hydrogen carrier, perhydro-dibenzyltoluene: The effect of Pd and Pt subsurface configurations. Computational Materials Science, 2020, 172, 109332.	1.4	34
27	The effects of pore widening and calcination on anodized aluminum oxide prepared from Al6082. Surface and Coatings Technology, 2020, 383, 125234.	2.2	9
28	Comparative study of anion exchange membranes for low-cost water electrolysis. International Journal of Hydrogen Energy, 2020, 45, 26070-26079.	3.8	96
29	Current Density Distribution of Electrolyzer Flow Fields: In Situ Current Mapping and Neutron Radiography. Energy & Samp; Fuels, 2020, 34, 1014-1023.	2.5	17
30	Density functional theory calculation of Ti3C2 MXene monolayer as catalytic support for platinum towards the dehydrogenation of methylcyclohexane. Applied Surface Science, 2020, 529, 147186.	3.1	34
31	A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements. Heliyon, 2020, 6, e05285.	1.4	60
32	Thermophilic Biogas Upgrading via ex Situ Addition of H ₂ and CO ₂ Using Codigested Feedstocks of Cow Manure and the Organic Fraction of Solid Municipal Waste. ACS Omega, 2020, 5, 17367-17376.	1.6	17
33	Temperature Profile Mapping over a Catalytic Unit of a Hydrogen Passive Autocatalytic Recombiner: An Experimental and Computational Fluid Dynamics Study. Energy & Samp; Fuels, 2020, 34, 11637-11649.	2.5	16
34	Development of a low purity aluminum alloy (Al6082) anodization process and its application as a platinum-based catalyst in catalytic hydrogen combustion. Surface and Coatings Technology, 2020, 404, 126483.	2.2	20
35	Performance evaluation and emissions reduction of a micro gas turbine via the co-combustion of H2/CH4/CO2 fuel blends. Sustainable Energy Technologies and Assessments, 2020, 39, 100718.	1.7	15
36	Thermally stable Pt/Ti mesh catalyst for catalytic hydrogen combustion. International Journal of Hydrogen Energy, 2020, 45, 16851-16864.	3.8	27

#	Article	IF	Citations
37	Thermal management and methanation performance of a microchannel-based Sabatier reactor/heat exchanger utilising renewable hydrogen. Fuel Processing Technology, 2020, 208, 106508.	3.7	15
38	Stress tolerance assessment of dibenzyltoluene-based liquid organic hydrogen carriers. Sustainable Energy and Fuels, 2020, 4, 4662-4670.	2.5	33
39	CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation. International Journal of Hydrogen Energy, 2020, 45, 9231-9240.	3.8	59
40	Current status, research trends, and challenges in water electrolysis science and technology. International Journal of Hydrogen Energy, 2020, 45, 26036-26058.	3.8	390
41	Microchannel reactor heat-exchangers: A review of design strategies for the effective thermal coupling of gas phase reactions. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108164.	1.8	26
42	Stability of Ionic-Covalently Cross-Linked PBI-Blended Membranes for so2 electrolysis at Elevated Temperatures. ECS Meeting Abstracts, 2020, MA2020-01, 1605-1605.	0.0	0
43	The effects of bismuth and tin on the mechanochemical processing of aluminum-based composites for hydrogen generation purposes. International Journal of Hydrogen Energy, 2019, 44, 21896-21912.	3.8	41
44	First principles study of single and multi-site transition metal dopant ions in MoS2 monolayer. Computational Condensed Matter, 2019, 21, e00419.	0.9	30
45	Evaluation of catalyst activity for release of hydrogen from liquid organic hydrogen carriers. International Journal of Hydrogen Energy, 2019, 44, 21926-21935.	3.8	53
46	Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082). Surface and Coatings Technology, 2019, 378, 124970.	2.2	25
47	Development of a Pt/stainless steel mesh catalyst and its application in catalytic hydrogen combustion. International Journal of Hydrogen Energy, 2019, 44, 27094-27106.	3.8	30
48	The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy & Camp; Fuels, 2019, 33, 2778-2796.	2.5	328
49	Pt/C and Pt/SnOx/C Catalysts for Ethanol Electrooxidation: Rotating Disk Electrode Study. Catalysts, 2019, 9, 271.	1.6	32
50	Nonequilibrium poroelectroelastic theory for polymer electrolytes under conditions of water electrolysis. International Journal of Hydrogen Energy, 2019, 44, 7889-7904.	3.8	11
51	Steady-state and transient modelling of a microchannel reactor for coupled ammonia decomposition and oxidation. International Journal of Hydrogen Energy, 2019, 44, 6415-6426.	3.8	14
52	Catalytic dehydrogenation of the liquid organic hydrogen carrier octahydroindole on Pt $(1\hat{a} \in 1\hat{a} \in 1)$ surface: Ab initio insights from density functional theory calculations. Applied Surface Science, 2019, 471, 1034-1040.	3.1	29
53	Insights on hydrogen evolution reaction in transition metal doped monolayer TcS2 from density functional theory calculations. Applied Surface Science, 2019, 470, 107-113.	3.1	22
54	Application of nanoparticles in biofuels: An overview. Fuel, 2019, 237, 380-397.	3.4	268

#	Article	IF	CITATIONS
55	IRIDIUM CATALYST SUPPORTED ON CONDUCTIVE TITANIUM OXIDES FOR POLYMER ELECTROLYTE MEMBRANE ELECTROLYSIS. Chemical Problems, 2019, 17, 9-15.	0.0	15
56	Analysis of reaction mixtures of perhydro-dibenzyltoluene using two-dimensional gas chromatography and single quadrupole gas chromatography. International Journal of Hydrogen Energy, 2018, 43, 5620-5636.	3.8	67
57	Reviewing H ₂ Combustion: A Case Study for Non-Fuel-Cell Power Systems and Safety in Passive Autocatalytic Recombiners. Energy & Samp; Fuels, 2018, 32, 6401-6422.	2.5	45
58	A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes. Journal of Power Sources, 2018, 386, 47-55.	4.0	33
59	Design and operation of an ammonia-fueled microchannel reactor for autothermal hydrogen production. Catalysis Today, 2018, 310, 187-194.	2.2	28
60	Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews, 2018, 81, 1690-1704.	8.2	507
61	Novel cross-linked PBI-blended membranes evaluated for high temperature fuel cell application and SO 2 electrolysis. Materials Today: Proceedings, 2018, 5, 10524-10532.	0.9	3
62	Power-to-Gas. , 2018, , 95-100.		0
63	Math hydrogen catalytic recombiner: Engineering model for dynamic full-scale calculations. International Journal of Hydrogen Energy, 2018, 43, 23523-23537.	3.8	14
64	Performance Degradation. , 2018, , 61-94.		1
65	Hydrogen generation by the hydrolysis of mechanochemically activated aluminum-tin-indium composites in pure water. International Journal of Hydrogen Energy, 2018, 43, 21398-21413.	3.8	47
66	Insight into the adsorption of a liquid organic hydrogen carrier, perhydro- <i>i</i> i-dibenzyltoluene (<i>i</i> - <i>m</i> , <i>o</i> , <i>p</i>), on Pt, Pd and PtPd planar surfaces. RSC Advances, 2018, 8, 31895-31904.	1.7	34
67	(Invited) Membranes with Recombination Catalyst for Hydrogen Crossover Reduction: Water Electrolysis. ECS Transactions, 2018, 85, 17-25.	0.3	14
68	Brief Historical Background of Water Electrolysis. , 2018, , 17-42.		3
69	The Individual Proton-Exchange Membrane Cell and Proton-Exchange Membrane Stack. , 2018, , 75-115.		2
70	Gas Permeation in PEM Water Electrolyzers. , 2018, , 117-158.		0
71	PBI-Blended Membrane Evaluated in High Temperature SO ₂ Electrolyzer. ECS Transactions, 2018, 85, 21-28.	0.3	7
72	(Invited) Membranes with Recombination Catalyst for Hydrogen Crossover Reduction: Water Electrolysis. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
73	PBI-Blended Membrane Evaluated in High Temperature SO2 Electrolyser. ECS Meeting Abstracts, 2018, , .	0.0	0
74	Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications. Research on Chemical Intermediates, 2017, 43, 4095-4102.	1.3	8
75	South African hydrogen infrastructure (HySA infrastructure) for fuel cells and energy storage: Overview of a projects portfolio. International Journal of Hydrogen Energy, 2017, 42, 13568-13588.	3.8	46
76	Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer electrolyte cells. Russian Journal of Electrochemistry, 2017, 53, 318-323.	0.3	34
77	Mathematical methodology and software package for investigation of nonstationary hydrogen permeability in membranes used in electrolysers and hydrogen fuel cells. International Journal of Hydrogen Energy, 2017, 42, 14667-14679.	3.8	1
78	Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. International Journal of Hydrogen Energy, 2017, 42, 10752-10761.	3.8	148
79	On the contamination of membrane–electrode assembles of water electrolyzers with solid polymer electrolyte by the elements of titanium alloys. Russian Journal of Electrochemistry, 2017, 53, 808-812.	0.3	6
80	Synthesis of rGO/Zr-MOF composite for hydrogen storage application. Journal of Alloys and Compounds, 2017, 724, 450-455.	2.8	61
81	PEM Water Electrolysis: Preliminary Investigations Using Neutron Radiography. Physics Procedia, 2017, 88, 19-26.	1.2	9
82	Hydrogen generation of mechanochemically activated Al Bi In composites. International Journal of Hydrogen Energy, 2017, 42, 16589-16602.	3.8	45
83	Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation. Chemical Engineering Journal, 2017, 313, 847-857.	6.6	57
84	Effect of Relative Humidity and Temperature on the Mechanical Properties of PFSA Nafionâ,,¢-cation-exchanged membranes for Electrochemical Applications. International Journal of Electrochemical Science, 2017, 12, 2573-2582.	0.5	5
85	Influence of Annealing on Pt Electrocatalyst: Theoretical Approach to Estimate CO Tolerance. International Journal of Electrochemical Science, 2016, , 4198-4204.	0.5	0
86	Electrochemical Characterization and Oxygen Reduction Kinetics of Cu-incorporated Cobalt Oxide Catalyst. International Journal of Electrochemical Science, 2016, 11, 8002-8015.	0.5	21
87	Electrocatalytic Process for Ammonia Electrolysis: A Remediation Technique with Hydrogen Co-Generation. International Journal of Electrochemical Science, 2016, 11, 6627-6635.	0.5	6
88	Theoretical limit of reversible hydrogen storage capacity for pristine and oxygen-doped boron nitride. International Journal of Hydrogen Energy, 2016, 41, 16984-16991.	3.8	23
89	Gas Crossover Mitigation in PEM Water Electrolysis: Hydrogen Cross-over Benchmark Study of 3M's Ir-NSTF Based Electrolysis Catalyst-Coated Membranes. ECS Transactions, 2016, 75, 1165-1173.	0.3	27
90	Techno-economic assessment of power-to-methane and power-to-syngas business models for sustainable carbon dioxide utilization in coal-to-liquid facilities. Journal of CO2 Utilization, 2016, 16, 399-411.	3.3	48

#	Article	IF	CITATIONS
91	Sulfonated poly(arylene thioether phosphine oxide)s and poly(arylene ether phosphine oxide)s PBI-blend membranes and their performance in SO2 electrolysis. International Journal of Hydrogen Energy, 2016, 41, 4521-4537.	3.8	13
92	Novel cross-linked partially fluorinated and non-fluorinated polyaromatic PBI-containing blendÂmembranes for SO2 electrolysis. International Journal of Hydrogen Energy, 2016, 41, 11868-11883.	3.8	5
93	Hydrogen production from ammonia decomposition over a commercial Ru/Al2O3 catalyst in a microchannel reactor: Experimental validation and CFD simulation. International Journal of Hydrogen Energy, 2016, 41, 3774-3785.	3.8	48
94	Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Research on Chemical Intermediates, 2016, 42, 5299-5307.	1.3	19
95	Various operating methods and parameters for <scp>SO</scp> ₂ electrolysis. Energy Science and Engineering, 2015, 3, 468-480.	1.9	15
96	Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms. International Journal of Energy Research, 2015, 39, 524-528.	2.2	21
97	Characterisation of a polyaromatic PBI blend membrane for SO2 electrolysis. International Journal of Hydrogen Energy, 2015, 40, 3122-3133.	3.8	12
98	Performance evaluation of a high-throughput microchannel reactor for ammonia decomposition over a commercial Ru-based catalyst. International Journal of Hydrogen Energy, 2015, 40, 2921-2926.	3.8	33
99	Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis. International Journal of Hydrogen Energy, 2015, 40, 8788-8796.	3.8	6
100	Effect of H2S on SO2-depolarised water electrolysis. International Journal of Hydrogen Energy, 2015, 40, 4442-4450.	3.8	9
101	Thermodynamical model for hydrogen storage capacity in carbon nanostructures. International Journal of Hydrogen Energy, 2015, 40, 4184-4193.	3.8	13
102	Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications. International Journal of Energy Research, 2015, 39, 494-503.	2.2	16
103	HySA infrastructure center of competence: A strategic collaboration platform for renewable hydrogen production and storage for fuel cell telecom applications. , 2014, , .		0
104	Thermal treatment induced transition from Zn ₃ (OH) ₂ (BDC) ₂ (MOF-69c) to Zn ₄ O(BDC) ₃ (MOF-5). International Journal of Materials Research, 2014, 105, 89-93.	0.1	13
105	Characterisation of a PEM electrolyser using the current interrupt method. International Journal of Hydrogen Energy, 2014, 39, 20865-20878.	3.8	32
106	Modeling of bimetallic Pt-based electrocatalyst on extended-surface support for advanced hydrogen compression and separation. International Journal of Hydrogen Energy, 2014, 39, 7805-7810.	3.8	10
107	Hydrogen Generation by Solid Polymer Electrolysis with Anodic Depolarization. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2014, 49, 575-578.	0.1	2
108	Experimental performance evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation. International Journal of Hydrogen Energy, 2014, 39, 7225-7235.	3.8	17

#	Article	IF	Citations
109	Comparison of ionically and ionical-covalently cross-linked polyaromatic membranes for SO2 electrolysis. International Journal of Hydrogen Energy, 2014, 39, 28-40.	3.8	21
110	Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications. International Journal of Hydrogen Energy, 2014, 39, 890-895.	3.8	126
111	Hydrogen Storage in Metal-Organic Frameworks: A Review. Electrochimica Acta, 2014, 128, 368-392.	2.6	329
112	Evaluation of MEA manufacturing parameters using EIS for SO 2 electrolysis. International Journal of Hydrogen Energy, 2014, 39, 18173-18181.	3.8	21
113	Characterisation tools development for PEM electrolysers. International Journal of Hydrogen Energy, 2014, 39, 14212-14221.	3.8	59
114	Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications. International Journal of Materials Research, 2014, 105, 516-519.	0.1	48
115	A modelling evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation. International Journal of Hydrogen Energy, 2014, 39, 11390-11402.	3.8	38
116	Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning. International Journal of Hydrogen Energy, 2014, 39, 20440-20446.	3.8	116
117	Equivalent electrical circuit modelling of a Proton Exchange Membrane electrolyser based on current interruption. , 2013, , .		7
118	Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review. International Journal of Hydrogen Energy, 2013, 38, 14968-14991.	3.8	131
119	A study of the loss characteristics of a single cell PEM electrolyser for pure hydrogen production. , 2013, , .		5
120	Hydrogen Storage in Aromatic Carbon Ring Based Molecular Materials Decorated with Alkali or Alkali-Earth Metals. Journal of Physical Chemistry C, 2012, 116, 25286-25292.	1.5	25
121	Hydrogen Infrastructure within HySA National Program in South Africa: Road Map and Specific Needs. Energy Procedia, 2012, 29, 42-52.	1.8	13
122	Probing platinum degradation in polymer electrolyte membrane fuel cells by synchrotron X-ray microscopy. Physical Chemistry Chemical Physics, 2012, 14, 4835.	1.3	26
123	Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. Journal of Power Sources, 2011, 196, 674-678.	4.0	87
124	Low equivalent weight short-side-chain perfluorosulfonic acid ionomers in fuel cell cathode catalyst layers. Journal of Power Sources, 2011, 196, 6168-6176.	4.0	47
125	Monomers, Polymers and Cross-Linked Membranes for Membrane Fuel Cells and Electrolysis. ECS Transactions, 2011, 41, 1621-1632.	0.3	6
126	Chemical Fingerprint Associated with the Formation of Pt in the Membrane in PEM Fuel Cells. ECS Transactions, 2010, 33, 391-398.	0.3	4

#	Article	IF	CITATIONS
127	Investigation of Proton Transport in the Catalyst Layer of PEM Fuel Cells by Electrochemical Impedance Spectroscopy. ECS Transactions, 2010, 28, 147-157.	0.3	48
128	Note: Determination of effective gas diffusion coefficients of stainless steel films with differently shaped holes using a Loschmidt diffusion cell. Review of Scientific Instruments, 2010, 81, 046104.	0.6	7
129	Fingerprints of Automotive Fuel Cell Degradation. ECS Transactions, 2010, 28, 127-135.	0.3	0
130	Degradation of a Cathode Catalyst Layer in Pem MEAs Subjected to Automotive-Specific Test Conditions. International Journal of Green Energy, 2009, 6, 594-606.	2.1	12
131	Fingerprint of automotive fuel cell cathode catalyst degradation: Pt band in PEMs. Membrane Technology, 2009, 2009, 7-10.	0.5	22
132	Advances in structural and chemical analysis of catalystcoated membranes for hydrogen fuel cell applications. Membrane Technology, 2009, 2009, 6-12.	0.5	7
133	Canada–USA PEM Fuel Cell Network Research Workshop: Report. Fuel Cells Bulletin, 2009, 2009, 12-16.	0.7	6
134	Workshop report: Vancouver to Northeast USA Fuel Cell and Hydrogen Cluster Connection. Membrane Technology, 2008, 2008, 6-9.	0.5	0
135	Measurement of gas permeability in SPE membranes for use in fuel cells. Membrane Technology, 2007, 2007, 6-9.	0.5	19
136	New opportunities for osmotic membrane distillation. Membrane Technology, 2006, 2006, 7-11.	0.5	6
137	Membrane science and technology in Russia: Status and perspectives. Membrane Technology, 2005, 2005, 6-10.	0.5	1
138	A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ionics, 2004, 175, 535-539.	1.3	213
139	Solid polyelectrolyte (SPE) membranes with textured surface. Journal of Membrane Science, 2004, 244, 69-76.	4.1	7
140	Morphological diversity of platinum clusters deposited on proton-exchange, perfluorinated membranes. Membrane Technology, 2001, 2001, 5-9.	0.5	4
141	Galvanodynamic study of the electrochemical switching effect in perfluorinated cation-exchange membranes modified by ethylenediamine. Journal of Membrane Science, 2001, 194, 81-90.	4.1	6
142	Solid polyelectrolyte (SPE) membranes containing a textured platinum catalyst. Journal of Membrane Science, 2001, 194, 135-140.	4.1	8
143	Self-diffusion of water and fluorine ions in anion-exchange polymeric materials (membranes and) Tj ETQq1 1 0.78 Membrane Science, 2000, 180, 1-13.	34314 rgB 4.1	T /Overlock 1 21
144	Preparation and characterisation of chemically-modified perfluorinated cation-exchange platinum-containing membranes. Journal of Membrane Science, 2000, 179, 221-229.	4.1	17

#	Article	IF	CITATIONS
145	Description of non-regular membrane structures: a novel phenomenological approach. Journal of Membrane Science, 2000, 170, 191-203.	4.1	18
146	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 293-302.	1.5	35
147	Electroless deposition of platinum on proton-conductive perfluorinated membranes modified with ethylene diamine. lonics, 1999, 5, 52-58.	1.2	3
148	Separation of 1-hexene/n-hexane mixtures using a hybrid membrane/extraction system. Separation and Purification Technology, 1999, 16, 167-174.	3.9	15
149	Membranes help to produce high-concentration ozone: new challenges. Membrane Technology, 1999, 1999, 5-8.	0.5	3
150	Phenomenological analysis of ethylene transport in a membrane contactor containing solutions of silver nitrate. Desalination, 1998, 115, 265-277.	4.0	5
151	Review of electro-assisted methods for water purification. Desalination, 1998, 115, 285-294.	4.0	175
152	Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water. Desalination, 1998, 115, 295-302.	4.0	73
153	Novel application of membrane contactors: solubility measurements of 1-hexene in solvents containing silver ions for liquid olefin/paraffin separations. Desalination, 1998, 115, 279-284.	4.0	13
154	Characterisation of membranes for electrochemically aided gas separation: Morphology of platinum deposition. Separation and Purification Technology, 1998, 14, 201-208.	3.9	10
155	Electrochemically-aided membrane separation and catalytic processes. Membrane Technology, 1998, 1998, 8-11.	0.5	6
156	New Possibilities of Electroinduced Membrane Gas and Vapor Separation. Industrial & Engineering Chemistry Research, 1997, 36, 2487-2489.	1.8	8
157	Use of nonporous polymeric flat-sheet gas-separation membranes in a membrane-liquid contactor: experimental studies. Journal of Membrane Science, 1996, 113, 275-284.	4.1	33
158	High-Efficiency Separation of an Ethylene/Ethane Mixture by a Large-Scale Liquid-Membrane Contactor Containing Flat-Sheet Nonporous Polymeric Gas-Separation Membranes and a Selective Flowing-Liquid Absorbent. Industrial & Description of the Missorbent of the Misso	1.8	40
159	Selective membrane valve for ternary gas mixture separation: model of mass transfer and experimental test. Industrial & Engineering Chemistry Research, 1993, 32, 2017-2022.	1.8	19