
Gheorghe Oancea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/78515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Balancing Rotating Parts. A New Method and Device. Mechanisms and Machine Science, 2022, , 183-190.	0.3	1
2	Methodology for Measuring the Cutting Inserts Wear. Symmetry, 2022, 14, 469.	1.1	4
3	Machining Parameters Optimization Based on Objective Function Linearization. Mathematics, 2022, 10, 803.	1.1	2
4	Modular milling cutter with inner-cooling network. MATEC Web of Conferences, 2021, 343, 01009.	0.1	1
5	Achieving Accuracy Improvements for Single-Point Incremental Forming Process Using a Circumferential Hammering Tool. Metals, 2021, 11, 482.	1.0	15
6	A Fully Symmetrical High Performance Modular Milling Cutter. Symmetry, 2021, 13, 496.	1.1	4
7	Magnetic Particle Inspection Optimization Solution within the Frame of NDT 4.0. Processes, 2021, 9, 1067.	1.3	10
8	STEP-NC Compliant Intelligent CNC Milling Machine with an Open Architecture Controller. Applied Sciences (Switzerland), 2021, 11, 6223.	1.3	5
9	Characterisation of EN 1.4136 stainless steel heat-treated in solar furnace. International Journal of Advanced Manufacturing Technology, 2019, 101, 2955-2964.	1.5	8
10	Agent-Based Simulation of Value Flow in an Industrial Production Process. Processes, 2019, 7, 82.	1.3	19
11	Research on manufacturing of pyramidal frustum parts using single point incremental forming process. IOP Conference Series: Materials Science and Engineering, 2019, 564, 012019.	0.3	3
12	Study of health and safety in the manufacturing industry using Pareto analysis. MATEC Web of Conferences, 2019, 299, 05008.	0.1	4
13	Parametric design of a complex part in a FEM environment. MATEC Web of Conferences, 2019, 299, 03005.	0.1	0
14	Research on Surface Roughness of Hardox Steels Parts Machined by Abrasive Waterjet. Strojniski Vestnik/Journal of Mechanical Engineering, 2019, , .	0.6	4
15	A new role of unruly product design based on "Transformed Objects―design approach. MATEC Web of Conferences, 2018, 178, 05015.	0.1	Ο
16	A new method for establishing the depths of cut for cast iron parts turning. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	1
17	Design and manufacturing of a fixing device for incremental sheet forming process. MATEC Web of Conferences, 2018, 178, 02004.	0.1	5
18	Integrating a New Software Tool Used for Tool Path Generation in the Numerical Simulation of Incremental Forming Processes. Strojniski Vestnik/Journal of Mechanical Engineering, 2018, 64, 643-651.	0.6	13

GHEORGHE OANCEA

#	Article	IF	CITATIONS
19	Incremental deformation: A literature review. MATEC Web of Conferences, 2017, 121, 03017.	0.1	8
20	Study on SLM manufacturing of teeth used for dental tools testing. MATEC Web of Conferences, 2017, 94, 03002.	0.1	9
21	A case study about acquisition of mechanically fixed cutting inserts. MATEC Web of Conferences, 2017, 137, 03004.	0.1	1
22	Researches on evaluation of smooth entrance in cutting using electrical current. A case study. MATEC Web of Conferences, 2017, 94, 02005.	0.1	6
23	Software tool used for automated design of customizable product. MATEC Web of Conferences, 2017, 137, 06003.	0.1	1
24	Innovative approach of drills acquisition using electrical current. A case study. MATEC Web of Conferences, 2017, 112, 01023.	0.1	3
25	Impact Testing on Composite Panels of Fiberglass, Carbon and Kevlar-Carbon A comparison and validation study. Materiale Plastice, 2017, 54, 700-707.	0.4	3
26	A Case Study of Reverse Engineering Integrated in an Automated Design Process. IOP Conference Series: Materials Science and Engineering, 2016, 161, 012029.	0.3	7
27	Electrical Current at Metal Cutting Process: A Literature Review. Applied Mechanics and Materials, 2015, 808, 40-47.	0.2	4
28	Impact Properties of Parts Manufactured from Fiberglass and Kevlar Composite Panels. Applied Mechanics and Materials, 2015, 809-810, 938-943.	0.2	0
29	Digital manufacturing of air-cooled single-cylinder engine block. International Journal of Advanced Manufacturing Technology, 2015, 80, 747-759.	1.5	15
30	Studies on thermal contraction of crankshaft bearings under extreme low temperatures. Journal of Thermal Science, 2015, 24, 496-501.	0.9	1
31	Impact Analysis of an Oxygen Mask Locking Panel of Aircraft Using Finite Element Modelling. Applied Mechanics and Materials, 2014, 657, 735-739.	0.2	2
32	Remanufacturing of Damaged Parts Using Selective Laser Melting Technology. Applied Mechanics and Materials, 2014, 693, 285-290.	0.2	8
33	Finite Element Analysis of Laminating Tools for Automotive Interior Parts. Applied Mechanics and Materials, 2014, 693, 273-278.	0.2	Ο
34	Customized Software Tools Integrated in Reverse Engineering Process of Rectangular Parts with Holes. Applied Mechanics and Materials, 2013, 371, 473-477.	0.2	1
35	CAD Modeling of Part Assemblies Using Reverse Engineering Technique. Advanced Materials Research, 2012, 591-593, 7-10.	0.3	4
36	Recognizing Algorithm for Digitized Rotational Parts. , 2012, , .		3

Recognizing Algorithm for Digitized Rotational Parts. , 2012, , . 36

GHEORGHE OANCEA

#	Article	IF	CITATIONS
37	Software Module for Data Exchange Between AutoCAD and a Virtual Reality System. , 2008, , 383-394.		2
38	Thermal Expansion Analysis of the Complex Body Assemblies. Applied Mechanics and Materials, 0, 309, 162-169.	0.2	4
39	Parts in CATIA Based on Reverse Engineering Technique. Applied Mechanics and Materials, 0, 371, 544-548.	0.2	1
40	Design and Manufacturing Optimization of Single-Cylinder Engine Block Prototype Using CATIA Environment. Applied Mechanics and Materials, 0, 474, 165-170.	0.2	2
41	Design Methodology of Laminating Tools. Applied Mechanics and Materials, 0, 657, 121-125.	0.2	Ο
42	Smart Engineering Design of a V10 Engine Using Digital Prototyping Technologies. Applied Mechanics and Materials, 0, 657, 730-734.	0.2	0
43	Software Tool Used for Simulation of Metal Spinning Process for Complex Rotational Parts. Applied Mechanics and Materials, 0, 657, 153-157.	0.2	1
44	Some Considerations Regarding Micro Hardness of Parts Manufactured from 316-L Steel Using SLM Technology. Applied Mechanics and Materials, 0, 760, 515-520.	0.2	13
45	Effect of Laminates Orientation on Impact Properties of Fiberglass and Kevlar Composite Panels. Applied Mechanics and Materials, 0, 808, 119-124.	0.2	Ο
46	Influence of Layer Thickness on Internal Structure of Parts Manufactured from 316-L Steel Using SLM Technology. Applied Mechanics and Materials, 0, 809-810, 369-374.	0.2	7
47	A review of STEP-NC compliant CNC systems and possibilities of closed loop manufacturing. IOP Conference Series: Materials Science and Engineering, 0, 399, 012014.	0.3	2