
Makoto Toba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7851287/publications.pdf Version: 2024-02-01

Μλκότο Τοβλ

#	Article	IF	CITATIONS
1	Efficient simultaneous esterification/transesterification of non-edible Jatropha oil for biodiesel fuel production by template-free synthesized nanoporous titanosilicates. Catalysis Today, 2020, 356, 56-63.	4.4	8
2	Profiling and catalytic upgrading of commercial palm oil-derived biodiesel fuels for high-blend fuels. Catalysis Today, 2019, 332, 122-131.	4.4	15
3	Hydrotreating of Jatropha-derived Bio-oil over Mesoporous Sulfide Catalysts to Produce Drop-in Transportation Fuels. Catalysts, 2019, 9, 392.	3.5	11
4	Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts. Catalysts, 2018, 8, 59.	3.5	16
5	Oxygenâ€Assisted Hydrogenation of Jatrophaâ€Oilâ€Derived Biodiesel Fuel over an Aluminaâ€Supported Palladium Catalyst To Produce Hydrotreated Fatty Acid Methyl Esters for Highâ€Blend Fuels. ChemCatChem, 2017, 9, 2633-2637.	3.7	8
6	Upgrading of palm biodiesel fuel over supported palladium catalysts. Comptes Rendus Chimie, 2016, 19, 1166-1173.	0.5	21
7	Carbonaceous Ti-incorporated SBA-15 with enhanced activity and durability for high-quality biodiesel production: Synthesis and utilization of the P123 template as carbon source. Applied Catalysis B: Environmental, 2016, 181, 800-809.	20.2	30
8	A costâ€effective acid degumming process produces highâ€quality Jatropha oil in tropical monsoon climates. European Journal of Lipid Science and Technology, 2015, 117, 1079-1087.	1.5	10
9	Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids. Bioresource Technology, 2014, 157, 346-350.	9.6	38
10	Deoxygenation of guaiacol and woody tar over reduced catalysts. Applied Catalysis B: Environmental, 2014, 146, 237-243.	20.2	89
11	Transformation of non-edible vegetable oils into biodiesel fuels catalyzed by unconventional sulfonic acid-functionalized SBA-15. Applied Catalysis A: General, 2014, 485, 28-39.	4.3	22
12	Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels. Applied Catalysis B: Environmental, 2014, 148-149, 344-356.	20.2	70
13	Production of high-quality biodiesel fuels from various vegetable oils over Ti-incorporated SBA-15 mesoporous silica. Catalysis Communications, 2013, 41, 136-139.	3.3	26
14	Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS. Catalysis Communications, 2013, 36, 1-4.	3.3	55
15	Pyrolyzer–GC/MS system-based analysis of the effects of zeolite catalysts on the fast pyrolysis of Jatropha husk. Applied Catalysis A: General, 2013, 456, 174-181.	4.3	56
16	Effect of Electrostatic Precipitator on Collection Efficiency of Bio-oil in Fast Pyrolysis of Biomass. Journal of the Japan Petroleum Institute, 2013, 56, 401-405.	0.6	3
17	Iron Oxide Catalysts Supported on Porous Silica for the Production of Biodiesel from Crude Jatropha Oil. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1981-1989.	1.9	20
18	Fast Pyrolysis of Jatropha Residues over Zeolite Catalysts. Journal of the Japan Petroleum Institute, 2012, 55, 69-70.	0.6	6

#	Article	lF	CITATIONS
19	Production of high quality transportation fuel from non-food biomass. Oleoscience, 2012, 12, 175-181.	0.0	1
20	Utilization Technology of Biofuels for Vehicle Engines -Biodiesel Fuel. Journal of the Japan Institute of Marine Engineering, 2012, 47, 83-88.	0.0	1
21	Deoxygenation of Bio-oil over Reduced Catalysts. Journal of the Japan Petroleum Institute, 2011, 54, 222-223.	0.6	2
22	Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catalysis Today, 2011, 164, 533-537.	4.4	192
23	Effect of Antioxidant Species on Oxidation Stability of Fish Oil Biodiesel. Journal of the Japan Petroleum Institute, 2010, 53, 365-366.	0.6	3
24	Influence of Degree of Unsaturation of Fatty Acid Methyl Ester on Oxidative Deterioration Behavior of Model Biodiesel Mixed Diesel Fuel. Journal of the Japan Petroleum Institute, 2009, 52, 359-360.	0.6	5
25	éšæ²¹āfē,₿,ªāf‡ā,£ãf¼ā,¼ãf«ã«å«ã¾ã,Œã,‹è,,,è,ªé,ãf¡ãfēf«ã,¨ã,¹ãf†ãf«ã®é,化挙動ãŠã,^ã³éf¨â^†æ	°´ç ´ıðŒ —å‡	¦ç¶a≋ka,^a,.é.
26	A Chemical Potential Diagram and an In-situ X-ray Diffraction Analysis of a V–Mg–O Catalyst Used in the Oxidative Dehydrogenation of n-Butane. Catalysis Letters, 2009, 127, 63-69.	2.6	13
27	Hydroisomerization of <i>n</i> -Hexadecane over Pt/Beta and Pt/USY Zeolite Catalysts. Journal of the Japan Petroleum Institute, 2009, 52, 143-144.	0.6	2
28	Surface species structure and activity in NO decomposition of an anatase-supported V–O–Mo catalyst. Catalysis Today, 2008, 137, 273-277.	4.4	6
29	Effects of Acidic Properties on the Catalytic Performance of CoMo Sulfide Catalysts in Selective Hydrodesulfurization of Gasoline Fractions. Energy & Fuels, 2008, 22, 1456-1462.	5.1	42
30	Analysis of Sulfur Compounds in Straight-run Naphtha and FCC Gasoline. Journal of the Japan Petroleum Institute, 2008, 51, 225-233.	0.6	7
31	Effect of Yb Loading on Aromatic Hydrogenation Activity of Pd-Pt/USY Zeolite Catalysts. Journal of the Japan Petroleum Institute, 2008, 51, 58-64.	0.6	5
32	Effect of Extraframework Aluminum of USY Zeolite on Sulfur Tolerance of Pd-Pt/USY Catalyst. Journal of the Japan Petroleum Institute, 2008, 51, 315-316.	0.6	2
33	Separation of Sulfur Compounds in Straight-Run Naphtha. Bulletin of the Chemical Society of Japan, 2007, 80, 2157-2160.	3.2	3
34	Active phases and sulfur tolerance of bimetallic Pd–Pt catalysts used for hydrotreatment. Applied Catalysis A: General, 2007, 322, 152-171.	4.3	100
35	Reactivity of olefins in the hydrodesulfurization of FCC gasoline over CoMo sulfide catalyst. Applied Catalysis B: Environmental, 2007, 70, 542-547.	20.2	54
36	Synthesis of monodisperse platinum nanoparticles supported on carbon gel microspheres. Journal of Non-Crystalline Solids, 2006, 352, 2929-2932.	3.1	4

#	Article	IF	CITATIONS
37	Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil. Journal of Colloid and Interface Science, 2006, 298, 535-542.	9.4	71
38	Bimodal Porous Co-Ir-SiO ₂ Catalysts Prepared by Sol-gel Process with Alkoxide for Fischer-Tropsch Synthesis. Journal of the Japan Petroleum Institute, 2006, 49, 28-32.	0.6	0
39	Selective hydrodesulfurization of FCC gasoline over CoMo/Al2O3 sulfide catalyst. Catalysis Today, 2005, 104, 64-69.	4.4	56
40	Effect of noble metal particle size on the sulfur tolerance of monometallic Pd and Pt catalysts supported on high-silica USY zeolite. Applied Catalysis A: General, 2005, 286, 249-257.	4.3	42
41	EXAFS study on the sulfidation behavior of Pd, Pt and Pd–Pt catalysts supported on amorphous silica and high-silica USY zeolite. Applied Catalysis A: General, 2005, 290, 73-80.	4.3	25
42	Effect of the coexistence of nitrogen compounds on the sulfur tolerance and catalytic activity of Pd and Pt monometallic catalysts supported on high-silica USY zeolite and amorphous silica. Applied Catalysis A: General, 2005, 293, 137-144.	4.3	30
43	Fischer-Tropsch synthesis over bimodal Co-Ir-SiO2 catalysts prepared by the alkoxide method. Reaction Kinetics and Catalysis Letters, 2005, 86, 3-9.	0.6	4
44	Sulfur Tolerance of Pd, Pt and Pd-Pt Catalysts Supported on Amorphous Silica. Journal of the Japan Petroleum Institute, 2004, 47, 222-223.	0.6	6
45	Ultra Deep Hydrodesulfurization of Gas Oils Over Sulfide and/or Noble Metal Catalysts. Catalysis Surveys From Asia, 2004, 8, 47-60.	2.6	30
46	Re-Co bimetallic catalysts prepared by sol/gel technique: characterization and catalytic properties. Applied Catalysis A: General, 2003, 246, 79-86.	4.3	15
47	Effect of lanthanum promotion on the structural and catalytic properties of nickel-molybdenum/alumina catalysts. Applied Catalysis A: General, 2003, 246, 213-225.	4.3	29
48	Synthesis, characterisation and catalytic applications of sol–gel derived silica–phosphotungstic acid composites. Applied Catalysis A: General, 2002, 228, 83-94.	4.3	76
49	Preparation of highly dispersed silica-supported palladium catalysts by a complexing agent-assisted sol–gel method and their characteristics. Applied Catalysis A: General, 2002, 229, 165-174.	4.3	14
50	Highly selective formation of aldehydes in the hydrogenation of the corresponding acid chlorides with silica-supported palladium catalysts prepared by a complexing agent-assisted sol–gel method. Applied Catalysis A: General, 2002, 229, 175-180.	4.3	7
51	Positional Isomerization of Dialkylnaphthalenes:Â A Comprehensive Interpretation of the Selective Formation of 2,6-DIPN over HM Zeolite. Journal of Physical Chemistry A, 2001, 105, 6513-6518.	2.5	27
52	Title is missing!. Catalysis Letters, 2001, 71, 55-61.	2.6	14
53	Preparation, characterization and application of the magadiite based mesoporous composite material of catalytic interest. Microporous and Mesoporous Materials, 2000, 35-36, 631-641.	4.4	18
54	Preparation of Titania Containing Mixed Oxides and Their Catalytic Activities. Journal of Sol-Gel Science and Technology, 2000, 19, 695-699.	2.4	2

#	Article	IF	CITATIONS
55	Molecular Electrostatics, Energetics, and Dynamics of the Alkylation of Naphthalene:Â Positional Isomerization of Monoalkylnaphthalenes at Hartreeâ^'Fock and Correlated Levels with BSSE Corrections. Journal of Physical Chemistry A, 2000, 104, 1337-1345.	2.5	13
56	Interpretation of IR spectra of adsorbed compounds on tectosilicate surfaces. Journal of Molecular Structure, 1999, 482-483, 43-47.	3.6	2
57	Mesoporous materials synthesized by intercalation of silicate tubes between magadiite layers. Applied Catalysis A: General, 1999, 176, L153-L158.	4.3	15
58	Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts. Applied Catalysis A: General, 1999, 189, 243-250.	4.3	101
59	Thermal Behaviour of Nanoporous Composites. Magyar Apróvad Közlemények, 1999, 56, 227-232.	1.4	2
60	Effect of Solvent Diols and Ligands on the Properties of Sol-Gel Alumina-Silicas. Journal of Sol-Gel Science and Technology, 1998, 13, 1027-1031.	2.4	11
61	Preparation of Layer Structure-Controlled Ru-Sn-Al2O3 Catalysts and Their Reactivity. Journal of Sol-Gel Science and Technology, 1998, 13, 1037-1041.	2.4	6
62	Title is missing!. Catalysis Letters, 1998, 52, 49-53.	2.6	13
63	Catalytic activity of a zeolite disc synthesized through solid-state reactions. Microporous and Mesoporous Materials, 1998, 21, 453-459.	4.4	22
64	Enumeration of the Conformers of Unbranched Aliphatic Alkanes. Journal of Physical Chemistry A, 1998, 102, 7698-7703.	2.5	45
65	Synthesis of oriented zeolite film on mercury surface. Studies in Surface Science and Catalysis, 1997, , 2225-2232.	1.5	13
66	Alkylation of toluene with methanol over zeolitedisc catalyst synthesized via solid-state reactions. Applied Catalysis A: General, 1997, 156, 335-345.	4.3	8
67	Effect of organic ligands used in sol-gel process on the formation of mullite. Journal of Sol-Gel Science and Technology, 1997, 8, 101-106.	2.4	7
68	Alkylation of toluene with methanol over a zeolite disc synthesized through solid state reactions. Reaction Kinetics and Catalysis Letters, 1997, 60, 89-92.	0.6	3
69	Hydrogenation of ethyl phenylacetate to 2-phenylethanol by ruthenium/tin/alumina catalysts elimination of need for high temperature activation of the catalysts with hydrogen; optimum oxidation state of tin. Applied Catalysis A: General, 1997, 165, 309-317.	4.3	5
70	Effects of raw materials and preparation methods of catalysts on the selective hydrogenation of ethyl phenylacetate. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 465-469.	1.9	12
71	Synthesis of a zeolite film on a mercury surface. Advanced Materials, 1996, 8, 517-520.	21.0	30
72	Selective hydrogenation of ethyl phenylacetate to 2-phenylethanol: a convenient catalyst preparation method. Catalysis Letters, 1995, 30, 297-304.	2.6	9

#	Article	IF	CITATIONS
73	Control of structure and particle size of iron oxide on carrier oxide by the sol-gel method using organic polydentate ligands. Journal of Sol-Gel Science and Technology, 1994, 2, 359-362.	2.4	7
74	Chapter 7 Shape-selective alkylation of polynuclear aromatics. Catalysis Today, 1994, 19, 187-211.	4.4	100
75	Effect of the type of preparation on the properties of titania/silicas. Journal of Molecular Catalysis, 1994, 91, 277-289.	1.2	36
76	The effect of preparation methods on the properties of zirconia/silicas. Journal of Molecular Catalysis, 1994, 94, 85-96.	1.2	35
77	Hydrogenation of 9-octadecenoic acid by Ruâ^'Snâ^'Al2 O3 catalysts: Effects of catalyst preparation method. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 501-506.	1.9	26
78	Effect of preparation methods on properties of alumina/titanias. Journal of Materials Chemistry, 1994, 4, 585.	6.7	35
79	Effect of preparation methods on properties of amorphous alumina/silicas. Journal of Materials Chemistry, 1994, 4, 1131.	6.7	21
80	Hydrogenation of oleic acid to 9-octadecen-1-ol with rhenium-tin catalyst. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 601-605.	1.9	12
81	Materials chemistry communications. New preparation method for highly siliceous zeolite films. Journal of Materials Chemistry, 1992, 2, 141.	6.7	33
82	Thermal behaviour of alumina from aluminium alkoxide reacted with complexing agent. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 97.	1.7	48
83	Synthesis and characterization of polycrystalline SAPO-5 film. Journal of Molecular Catalysis, 1992, 77, L19-L26.	1.2	32
84	Selective hydrogenation of oleic acid to 9-octadecen-1-ol: Catalyst preparation and optimum reaction conditions. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 410-416.	1.9	80
85	Shape-selective synthesis of 2,6-diisopropylnaphthalene over H-mordenite catalyst. Journal of the Chemical Society Chemical Communications, 1991, , 39.	2.0	104
86	Partial hydrogenation of benzene with ruthenium catalysts prepared by a chemical mixing-spray drying procedure Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 284-290.	0.1	1
87	Synthesis of thermostable high-surface-area alumina for catalyst support. Journal of Materials Science Letters, 1990, 9, 522-523.	0.5	26
88	Synthesis of cordierite by complexing agent-assisted sol–gel procedure. Journal of the Chemical Society Chemical Communications, 1990, , 1268-1269.	2.0	15
89	Formation of size-controlled micro-pores in amorphous mixed oxides by an advanced sol–gel method. Journal of the Chemical Society Chemical Communications, 1990, , 1211-1212.	2.0	16
90	Control of the acidity and surface area of silica-aluminas by a chemical mixing procedure Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1989, 1989, 1523-1530.	0.1	5

#	Article	IF	CITATIONS
91	Structural regulation of iron oxide supported on a metal oxide by organic compounds. Journal of the Chemical Society Chemical Communications, 1988, , 1540.	2.0	15
92	Preparation and properties of the thermostable alumina mixed oxides for combustion catalysts Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1988, 1988, 1542-1548.	0.1	10
93	Homogeneous doping of silica by uranyl ions using a chemical mixing procedure. Journal of the Chemical Society Chemical Communications, 1986, , 678.	2.0	6
94	A REGIO- AND STEREOSELECTIVE SYNTHESIS OF ALDOLIZED Î ³ -DIKETONESVIATIN(IV) BISENOLATES BY THE USE OF BIS(2-PYRIDINETHIOLATO)TIN(II). Chemistry Letters, 1985, 14, 1539-1542.	1.3	7