
Stewart Thomas Cole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7851249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the development of new tuberculosis drugs and treatment regimens. Nature Reviews Drug Discovery, 2013, 12, 388-404.	21.5	726
2	Benzothiazinones Kill <i>Mycobacterium tuberculosis</i> by Blocking Arabinan Synthesis. Science, 2009, 324, 801-804.	6.0	660
3	Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Molecular Microbiology, 2002, 46, 709-717.	1.2	645
4	Insights from the complete genome sequence of <i>Mycobacterium marinum</i> on the evolution of <i>Mycobacterium tuberculosis</i> . Genome Research, 2008, 18, 729-741.	2.4	471
5	On the Origin of Leprosy. Science, 2005, 308, 1040-1042.	6.0	441
6	TubercuList – 10 years after. Tuberculosis, 2011, 91, 1-7.	0.8	387
7	Cross-Resistance between Clofazimine and Bedaquiline through Upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 2979-2981.	1.4	376
8	Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nature Genetics, 2009, 41, 1282-1289.	9.4	360
9	The MycoBrowser portal: A comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis, 2011, 91, 8-13.	0.8	355
10	Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host and Microbe, 2015, 17, 799-810.	5.1	341
11	Genome-Wide Comparison of Medieval and Modern <i>Mycobacterium leprae</i> . Science, 2013, 341, 179-183.	6.0	313
12	Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Molecular Medicine, 2014, 6, 372-383.	3.3	311
13	New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infectious Diseases, The, 2014, 14, 327-340.	4.6	302
14	Probable Zoonotic Leprosy in the Southern United States. New England Journal of Medicine, 2011, 364, 1626-1633.	13.9	296
15	High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors. PLoS Pathogens, 2009, 5, e1000645.	2.1	281
16	Dissection of ESAT-6 System 1 of Mycobacterium tuberculosis and Impact on Immunogenicity and Virulence. Infection and Immunity, 2006, 74, 88-98.	1.0	279
17	Systematic Genetic Nomenclature for Type VII Secretion Systems. PLoS Pathogens, 2009, 5, e1000507.	2.1	233
18	Structural Basis for Benzothiazinone-Mediated Killing of <i>Mycobacterium tuberculosis</i> . Science Translational Medicine, 2012, 4, 150ra121.	5.8	159

#	Article	IF	CITATIONS
19	Benzothiazinones Are Suicide Inhibitors of Mycobacterial Decaprenylphosphoryl-β- <scp>d</scp> -ribofuranose 2′-Oxidase DprE1. Journal of the American Chemical Society, 2012, 134, 912-915.	6.6	155
20	Bacterial Artificial Chromosome-Based Comparative Genomic Analysis Identifies Mycobacterium microti as a Natural ESAT-6 Deletion Mutant. Infection and Immunity, 2002, 70, 5568-5578.	1.0	152
21	Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nature Communications, 2015, 6, 7659.	5.8	141
22	Red squirrels in the British Isles are infected with leprosy bacilli. Science, 2016, 354, 744-747.	6.0	138
23	Insight into the evolution and origin of leprosy bacilli from the genome sequence of <i>Mycobacterium lepromatosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4459-4464.	3.3	134
24	Functional Analysis of Early Secreted Antigenic Target-6, the Dominant T-cell Antigen of Mycobacterium tuberculosis, Reveals Key Residues Involved in Secretion, Complex Formation, Virulence, and Immunogenicity. Journal of Biological Chemistry, 2005, 280, 33953-33959.	1.6	133
25	The PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004183.	2.1	127
26	DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization. ACS Chemical Biology, 2015, 10, 1631-1636.	1.6	123
27	2-Carboxyquinoxalines Kill <i>Mycobacterium tuberculosis</i> through Noncovalent Inhibition of DprE1. ACS Chemical Biology, 2015, 10, 705-714.	1.6	116
28	Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein. PLoS Pathogens, 2012, 8, e1002621.	2.1	115
29	<i>Mycobacterium leprae</i> : genes, pseudogenes and genetic diversity. Future Microbiology, 2011, 6, 57-71.	1.0	106
30	Mode of Action of Clofazimine and Combination Therapy with Benzothiazinones against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4457-4463.	1.4	105
31	Zoonotic Leprosy in the Southeastern United States. Emerging Infectious Diseases, 2015, 21, 2127-34.	2.0	100
32	Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathogens, 2018, 14, e1006997.	2.1	98
33	Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nature Communications, 2018, 9, 352.	5.8	95
34	Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis, 2010, 90, 354-360.	0.8	92
35	Streptomycin-Starved Mycobacterium tuberculosis 18b, a Drug Discovery Tool for Latent Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5782-5789.	1.4	88
36	The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4446-4452.	1.4	85

#	Article	IF	CITATIONS
37	Anticytolytic Screen Identifies Inhibitors of Mycobacterial Virulence Protein Secretion. Cell Host and Microbe, 2014, 16, 538-548.	5.1	83
38	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	1.8	83
39	<scp>E</scp> sp <scp>C</scp> forms a filamentous structure in the cell envelope of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> and impacts <scp>ESX</scp> secretion. Molecular Microbiology, 2017, 103, 26-38.	1.2	77
40	Assessing the essentiality of the decaprenylâ€phosphoâ€ <scp>d</scp> â€arabinofuranose pathway in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> using conditional mutants. Molecular Microbiology, 2014, 92, 194-211.	1.2	76
41	Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Research, 2010, 38, e134-e134.	6.5	74
42	Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG. Chemistry and Biology, 2015, 22, 917-927.	6.2	72
43	ESAT-6 Secretion-Independent Impact of ESX-1 Genes espF and espG1 on Virulence of Mycobacterium tuberculosis. Journal of Infectious Diseases, 2011, 203, 1155-1164.	1.9	66
44	EspD Is Critical for the Virulence-Mediating ESX-1 Secretion System in Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 884-893.	1.0	66
45	<i><scp>M</scp>ycobacterium tuberculosis</i> â€ <scp>EspB</scp> binds phospholipids and mediates <scp>EsxA</scp> â€independent virulence. Molecular Microbiology, 2013, 89, 1154-1166.	1.2	65
46	Evidence of zoonotic leprosy in ParÃ;, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. PLoS Neglected Tropical Diseases, 2018, 12, e0006532.	1.3	65
47	Genomeâ€wide regulon and crystal structure of BlaI (Rv1846c) from <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2009, 71, 1102-1116.	1.2	61
48	Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics, 2014, 15, 270.	1.2	60
49	Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase. PLoS Genetics, 2017, 13, e1006754.	1.5	56
50	Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Drug Discovery Today, 2017, 22, 526-533.	3.2	55
51	In VitroandIn VivoActivities of Three Oxazolidinones against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3217-3223.	1.4	53
52	Inhibiting <i>Mycobacterium tuberculosis</i> within and without. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150506.	1.8	52
53	Arylvinylpiperazine Amides, a New Class of Potent Inhibitors Targeting QcrB of Mycobacterium tuberculosis. MBio, 2018, 9, .	1.8	52
54	Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. Journal of Structural Biology, 2015, 191, 236-244.	1.3	51

#	Article	IF	CITATIONS
55	Structure-Based Drug Design and Characterization of Sulfonyl-Piperazine Benzothiazinone Inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	49
56	Optimized Background Regimen for Treatment of Active Tuberculosis with the Next-Generation Benzothiazinone Macozinone (PBTZ169). Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	48
57	Phenotypic Profiling of Mycobacterium tuberculosis EspA Point Mutants Reveals that Blockage of ESAT-6 and CFP-10 Secretion <i>In Vitro</i> Does Not Always Correlate with Attenuation of Virulence. Journal of Bacteriology, 2013, 195, 5421-5430.	1.0	47
58	Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure–activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose 2′-oxidase. Bioorganic and Medicinal Chemistry, 2015, 23, 7694-7710.	1.4	44
59	Comparative Analysis of B- and T-Cell Epitopes of Mycobacterium leprae and Mycobacterium tuberculosis Culture Filtrate Protein 10. Infection and Immunity, 2004, 72, 3161-3170.	1.0	41
60	High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Research, 2013, 41, 961-977.	6.5	41
61	New 2-Ethylthio-4-methylaminoquinazoline derivatives inhibiting two subunits of cytochrome bc1 in Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1008270.	2.1	38
62	Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6451-6459.	1.4	36
63	Whole genome sequencing distinguishes between relapse and reinfection in recurrent leprosy cases. PLoS Neglected Tropical Diseases, 2017, 11, e0005598.	1.3	35
64	EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis. PLoS Pathogens, 2018, 14, e1007491.	2.1	33
65	Leprosy in wild chimpanzees. Nature, 2021, 598, 652-656.	13.7	30
66	Database resources for the tuberculosis community. Tuberculosis, 2013, 93, 12-17.	0.8	27
67	<scp>Espl</scp> regulates the <scp>ESX</scp> â€₄ secretion system in response to <scp>ATP</scp> levels in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> . Molecular Microbiology, 2014, 93, 1057-1065.	1.2	27
68	Comprehensive proteome analysis of <i>Mycobacterium ulcerans</i> and quantitative comparison of mycolactone biosynthesis. Proteomics, 2008, 8, 3124-3138.	1.3	26
69	GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis. Journal of Bacteriology, 2015, 197, 3686-3697.	1.0	26
70	Transmission of Drug-Resistant Leprosy in Guinea-Conakry Detected Using Molecular Epidemiological Approaches: Table 1 Clinical Infectious Diseases, 2016, 63, 1482-1484.	2.9	25
71	Genomic Characterization of Mycobacterium leprae to Explore Transmission Patterns Identifies New Subtype in Bangladesh. Frontiers in Microbiology, 2020, 11, 1220.	1.5	20
72	Essential Nucleoid Associated Protein mIHF (Rv1388) Controls Virulence and Housekeeping Genes in Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 14214.	1.6	19

STEWART THOMAS COLE

#	Article	IF	CITATIONS
73	Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics, 2016, 17, 190.	1.2	18
74	High resolution CryoEM structure of the ring-shaped virulence factor EspB from Mycobacterium tuberculosis. Journal of Structural Biology: X, 2020, 4, 100029.	0.7	17
75	Comparison of target enrichment strategies for ancient pathogen DNA. BioTechniques, 2020, 69, 455-459.	0.8	17
76	Insights from the Genome Sequence of <i>Mycobacterium lepraemurium</i> : Massive Gene Decay and Reductive Evolution. MBio, 2017, 8, .	1.8	16
77	Population Genomics of Mycobacterium leprae Reveals a New Genotype in Madagascar and the Comoros. Frontiers in Microbiology, 2020, 11, 711.	1.5	15
78	Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biology, 2021, 19, 220.	1.7	14
79	Promoter mutagenesis for fineâ€ŧuning expression of essential genes in <i>Mycobacterium tuberculosis</i> . Microbial Biotechnology, 2018, 11, 238-247.	2.0	13
80	Tuberculosis drug discovery needs public–private consortia. Drug Discovery Today, 2017, 22, 477-478.	3.2	12
81	A new paradigm for leprosy diagnosis based on host gene expression. PLoS Pathogens, 2021, 17, e1009972.	2.1	11
82	Mycobacterium tuberculosis EspK Has Active but Distinct Roles in the Secretion of EsxA and EspB. Journal of Bacteriology, 2022, 204, e0006022.	1.0	10
83	Rv3852 (H-NS) of Mycobacterium tuberculosis Is Not Involved in Nucleoid Compaction and Virulence Regulation. Journal of Bacteriology, 2017, 199, .	1.0	9
84	Synthesis of diphenoxyadamantane alkylamines with pharmacological interest. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1278-1281.	1.0	9
85	6,11-Dioxobenzo[<i>f</i>]pyrido[1,2- <i>a</i>]indoles Kill <i>Mycobacterium tuberculosis</i> by Targeting Iron–Sulfur Protein Rv0338c (IspQ), A Putative Redox Sensor. ACS Infectious Diseases, 2020, 6, 3015-3025.	1.8	9
86	Emergence of Mycobacterium leprae Rifampin Resistance Evaluated by Whole-Genome Sequencing after 48 Years of Irregular Treatment. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	7
87	Polarly Localized EccE ₁ Is Required for ESX-1 Function and Stabilization of ESX-1 Membrane Proteins in Mycobacterium tuberculosis. Journal of Bacteriology, 2020, 202, .	1.0	7
88	Synthesis, biology, computational studies and <i>in vitro</i> controlled release of new isoniazid-based adamantane derivatives. Future Medicinal Chemistry, 2019, 11, 2779-2802.	1.1	4
89	Structural and DNA binding properties of mycobacterial integration host factor mIHF. Journal of Structural Biology, 2020, 209, 107434.	1.3	3
90	Advanced Quantification Methods To Improve the 18b Dormancy Model for Assessing the Activity of Tuberculosis Drugs <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	3

#	Article	IF	CITATIONS
91	Monitoring Tuberculosis Drug Activity in Live Animals by Using Near-Infrared Fluorescence Imaging. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	2
92	From functional genomics to systems (micro)biology. Current Opinion in Microbiology, 2009, 12, 528-530.	2.3	1
93	FasR Regulates Fatty Acid Biosynthesis and Is Essential for Virulence of Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 586285.	1.5	1
94	Celebrating 130 years of achievement by the Institut Pasteur. Microbes and Infection, 2019, 21, 189.	1.0	0
95	Design, Synthesis and inâ€vitro Controlled Release of New Adamantanodiarylketone Antimycobacterials. ChemistrySelect, 2019, 4, 11048-11051.	0.7	0
96	Celebrating 130 years of achievement by the Institut Pasteur. Genes and Immunity, 2019, 20, 341-341.	2.2	0