Jean-Marc Ginoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7851186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convolutional neural network for video fire and smoke detection. , 2016, , .		195
2	Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybernetics and Biomedical Engineering, 2018, 38, 362-372.	5.9	82
3	Continuous blood glucose level prediction of Type 1 Diabetes based on Artificial Neural Network. Biocybernetics and Biomedical Engineering, 2018, 38, 828-840.	5.9	81
4	An Ultrasonic Contactless Sensor for Breathing Monitoring. Sensors, 2014, 14, 15371-15386.	3.8	79
5	Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept. Chaos, 2012, 22, 023120.	2.5	70
6	Mathematical convergences of biodiversity indices. Ecological Indicators, 2013, 29, 522-528.	6.3	51
7	Convolutional neural network for smoke and fire semantic segmentation. IET Image Processing, 2021, 15, 634-647.	2.5	47
8	DIFFERENTIAL GEOMETRY AND MECHANICS: APPLICATIONS TO CHAOTIC DYNAMICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 887-910.	1.7	37
9	Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames. Journal of the Acoustical Society of America, 2010, 128, 137-151.	1.1	35
10	POINCARÉ'S FORGOTTEN CONFERENCES ON WIRELESS TELEGRAPHY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 3617-3626.	1.7	33
11	SLOW INVARIANT MANIFOLDS AS CURVATURE OF THE FLOW OF DYNAMICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 3409-3430.	1.7	23
12	A physical memristor based Muthuswamy–Chua–Ginoux system. Scientific Reports, 2020, 10, 19206.	3.3	23
13	Chaos in a predator–prey-based mathematical model for illicit drug consumption. Applied Mathematics and Computation, 2019, 347, 502-513.	2.2	21
14	Is type 1 diabetes a chaotic phenomenon?. Chaos, Solitons and Fractals, 2018, 111, 198-205.	5.1	20
15	Artificial neural network for blood glucose level prediction. , 2017, , .		18
16	Minimal Universal Model for Chaos in Laser with Feedback. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2130013.	1.7	18
17	Connecting curves for dynamical systems. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 255101.	2.1	17
18	CHAOS IN A THREE-DIMENSIONAL VOLTERRA–GAUSE MODEL OF PREDATOR–PREY TYPE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 1689-1708.	1.7	16

JEAN-MARC GINOUX

#	Article	IF	CITATIONS
19	TOPOLOGICAL ANALYSIS OF CHAOTIC SOLUTION OF A THREE-ELEMENT MEMRISTIVE CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 3819-3827.	1.7	14
20	The flow curvature method applied to canard explosion. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 465203.	2.1	13
21	CANARDS FROM CHUA'S CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1330010.	1.7	11
22	Canards Existence in FitzHugh-Nagumo and Hodgkin-Huxley Neuronal Models. Mathematical Problems in Engineering, 2015, 2015, 1-17.	1.1	11
23	The Slow Invariant Manifold of the Lorenz–Krishnamurthy Model. Qualitative Theory of Dynamical Systems, 2014, 13, 19-37.	1.7	9
24	Canards Existence in Memristor's Circuits. Qualitative Theory of Dynamical Systems, 2016, 15, 383-431.	1.7	9
25	Slow Manifold of a Neuronal Bursting Model. , 2006, , 119-128.		8
26	Blondel et les oscillations auto-entretenues. Archive for History of Exact Sciences, 2012, 66, 485-530.	0.5	8
27	THE SINGING ARC: THE OLDEST MEMRISTOR?. , 2013, , 494-507.		8
28	Torus Breakdown in a Uni Junction Memristor. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850128.	1.7	8
29	Slow Invariant Manifolds of Slow–Fast Dynamical Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150112.	1.7	8
30	DEVELOPMENT OF THE NONLINEAR DYNAMICAL SYSTEMS THEORY FROM RADIO ENGINEERING TO ELECTRONICS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 2131-2163.	1.7	7
31	Zeroâ€Hopf bifurcation in the Volterraâ€Gause system of predatorâ€prey type. Mathematical Methods in the Applied Sciences, 2017, 40, 7858-7866.	2.3	6
32	Canards Existence in the Hindmarsh–Rose model. Mathematical Modelling of Natural Phenomena, 2019, 14, 409.	2.4	6
33	Flow curvature manifolds for shaping chaotic attractors: I. Rössler-like systems. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 285101.	2.1	5
34	From Nonlinear Oscillations to Chaos Theory. Understanding Complex Systems, 2016, , 27-47.	0.6	5
35	Torus Breakdown and Homoclinic Chaos in a Glow Discharge Tube. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750220.	1.7	5
36	Albert Einstein and the Doubling of the Deflection of Light. Foundations of Science, 2022, 27, 829-850.	0.7	5

#	Article	IF	CITATIONS
37	WSN BASED THERMAL MODELING: A NEW INDOOR ENERGY EFFICIENT SOLUTION. International Journal on Smart Sensing and Intelligent Systems, 2015, 8, 869-895.	0.7	5
38	THE FIRST "LOST" INTERNATIONAL CONFERENCE ON NONLINEAR OSCILLATIONS (I.C.N.O.). International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250097.	1.7	4
39	Frisch's Propagation-Impulse Model: A Comprehensive Mathematical Analysis. Foundations of Science, 2023, 28, 57-84.	0.7	4
40	Estimation of blood glucose levels techniques. , 2017, , .		3
41	The paradox of Vito Volterra's predator-prey model. Lettera Matematica, 2017, 5, 305-311.	0.1	3
42	Torus breakdown in a two-stroke relaxation memristor. Chaos, Solitons and Fractals, 2021, 153, 111594.	5.1	3
43	Flow curvature manifold and energy of generalized Liénard systems. Chaos, Solitons and Fractals, 2022, 161, 112354.	5.1	3
44	Mathematical modelling of sleep fragmentation diagnosis. Biomedical Signal Processing and Control, 2016, 24, 83-92.	5.7	2
45	Sur la détermination du périmètre de l'ovale à huit centres. Comptes Rendus Mathematique, 2018, 356, 1195-1202.	0.3	2
46	Slow Invariant Manifold of Laser with Feedback. Symmetry, 2021, 13, 1898.	2.2	2
47	Invariant Manifolds of Complex Systems. Understanding Complex Systems, 2009, , 41-49.	0.6	2
48	Multi-pattern cross training: An ANN model training method using WSN sensor data. , 2013, , .		1
49	Sleep fragmentation thresholds of sleep fragmentation indices. , 2016, , .		1
50	From the Series-Dynamo Machine to the Singing Arc: Gérard-Lescuyer, Blondel, Poincaré. Archimedes, 2017, , 3-37.	0.3	1
51	The Krylov-Bogolyubov Method: Towards a Nonlinear Mechanics. Archimedes, 2017, , 291-304.	0.3	1
52	Harmonic oscillator tank: A new method for leakage and energy reduction in a water distribution network with pressure driven demand. Energy, 2020, 201, 117657.	8.8	1
53	Van der Pol's Method: A Simple and Classic Solution. Archimedes, 2017, , 275-289.	0.3	1

54 Glycemic evolution of type 1 diabetic patients is a chaotic phenomenon. , 2016, , .

0

JEAN-MARC GINOUX

#	Article	IF	CITATIONS
55	Andronov's Notes: Toward the Concept of Self-Oscillations. Archimedes, 2017, , 131-144.	0.3	0
56	Einstein e la stampa: Una relazione tumultuosa. Lettera Matematica Pristem, 2017, 99, 61-64.	0.0	0
57	ll paradosso del modello PREDATORE-PREDA di Vito Volterra. Lettera Matematica Pristem, 2017, 102, 54-62.	0.0	Ο
58	Perimeter Determination of the Eight-Centered Oval. Mathematical Intelligencer, 2020, 42, 20-29.	0.2	0
59	Dynamics and Darboux Integrability of the D2 Polynomial Vector Fields of Degree 2 in \$mathbb {R}^{3}\$. Mathematical Physics Analysis and Geometry, 2021, 24, 1.	1.0	0
60	The Paradigm of Relaxation Oscillations in France. Archimedes, 2017, , 177-255.	0.3	0
61	The Mandel'shtam-Papalexi School: The "Van der Pol-Poincaré―Method. Archimedes, 2017, , 305-310.	0.3	0
62	From Quasi-periodic Functions to Recurrent Motions. Archimedes, 2017, , 311-330.	0.3	0
63	Hadamard and His Seminary: At the Crossroads of Ideas and Theories. Archimedes, 2017, , 331-338.	0.3	0
64	The Great War and the First Triode Designs: Abraham, Bloch, Blondel, Van der Pol. Archimedes, 2017, , 39-65.	0.3	0
65	Van der Pol's Prototype Equation: Existence and Uniqueness of the Periodic Solution Cartan, Van der Pol, Liénard. Archimedes, 2017, , 67-101.	0.3	0
66	The First International Conference on Nonlinear Processes: Paris 1933. Archimedes, 2017, , 165-176.	0.3	0
67	Van der Pol's Lectures: Towards the Concept of Relaxation Oscillations. Archimedes, 2017, , 109-130.	0.3	0
68	Response to Van der Pol's and Andronov's Work in France. Archimedes, 2017, , 145-163.	0.3	0
69	The Poincar $ ilde{A}$ ©-Lindstedt Method: The Incompatibility with Radio Engineering. Archimedes, 2017, , 265-273.	0.3	0
70	From Branly Coherer to Chua Memristor. , 2018, , 1-33.		0
71	Canards Existence in the Hindmarsh–Rose Model. Trends in Mathematics, 2019, , 169-175.	0.1	0