
JiÅÃ[™] ÄŒejka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7851040/publications.pdf Version: 2024-02-01

ΙιΔ΄™Ã-ӒŒεικλ

#	Article	IF	CITATIONS
1	Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 2014, 114, 4807-4837.	47.7	625
2	A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 2013, 5, 628-633.	13.6	355
3	ACID-CATALYZED SYNTHESIS OF MONO- AND DIALKYL BENZENES OVER ZEOLITES: ACTIVE SITES, ZEOLITE TOPOLOGY, AND REACTION MECHANISMS. Catalysis Reviews - Science and Engineering, 2002, 44, 375-421.	12.9	354
4	Perspectives of Micro/Mesoporous Composites in Catalysis. Catalysis Reviews - Science and Engineering, 2007, 49, 457-509.	12.9	350
5	Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chemical Engineering Journal, 2008, 144, 336-342.	12.7	345
6	Organized mesoporous alumina: synthesis, structure and potential in catalysis. Applied Catalysis A: General, 2003, 254, 327-338.	4.3	339
7	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	38.1	275
8	Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 2012, 179, 2-15.	4.4	274
9	Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology, 2013, 3, 2509.	4.1	270
10	Two-dimensional zeolites: dream or reality?. Catalysis Science and Technology, 2011, 1, 43.	4.1	252
11	Recent Advances in Catalysis Over Mesoporous Molecular Sieves. Topics in Catalysis, 2010, 53, 141-153.	2.8	237
12	Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas. Catalysis Reviews - Science and Engineering, 2008, 50, 222-286.	12.9	231
13	From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47, 8263-8306.	38.1	230
14	Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 2011, 133, 6130-6133.	13.7	208
15	Synthesis of â€~unfeasible' zeolites. Nature Chemistry, 2016, 8, 58-62.	13.6	186
16	Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology, 2013, 3, 500-507.	4.1	179
17	Transport and Isomerization of Xylenes over HZSM-5 Zeolites. Journal of Catalysis, 1993, 139, 24-33.	6.2	178
18	Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science and Technology, 2016, 6, 2467-2484.	4.1	161

#	Article	IF	CITATIONS
19	Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 2015, 7, 381-388.	13.6	153
20	Recent Advances in Reactions of Alkylbenzenes Over Novel Zeolites: The Effects of Zeolite Structure and Morphology. Catalysis Reviews - Science and Engineering, 2014, 56, 333-402.	12.9	148
21	Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. Journal of Catalysis, 2011, 279, 366-380.	6.2	145
22	Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Microporous and Mesoporous Materials, 2003, 64, 165-174.	4.4	143
23	Application of Molecular Sieves in Transformations of Biomass and Biomass-Derived Feedstocks. Catalysis Reviews - Science and Engineering, 2013, 55, 1-78.	12.9	142
24	[Cu ₃ (BTC) ₂]: A Metal–Organic Framework Catalyst for the Friedläder Reaction. ChemCatChem, 2011, 3, 157-159.	3.7	139
25	Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. Journal of Catalysis, 2010, 276, 327-334.	6.2	137
26	Heterogeneous Pd catalysts supported on silica matrices. RSC Advances, 2014, 4, 65137-65162.	3.6	137
27	Functionalization of Delaminated Zeolite ITQ-6 for the Adsorption of Carbon Dioxide. Langmuir, 2009, 25, 10314-10321.	3.5	134
28	Acylation Reactions over Zeolites and Mesoporous Catalysts. ChemSusChem, 2009, 2, 486-499.	6.8	128
29	Acidic Properties of SSZ-33 and SSZ-35 Novel Zeolites:  a Complex Infrared and MAS NMR Study. Journal of Physical Chemistry C, 2008, 112, 2997-3007.	3.1	120
30	Synthesis of quinolines via Friedläder reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 2012, 41, 4036.	3.3	118
31	The role of the extra-framework cations in the adsorption of CO2 on faujasite Y. Physical Chemistry Chemical Physics, 2010, 12, 13534.	2.8	117
32	Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catalysis Today, 2016, 277, 171-181.	4.4	116
33	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	13.8	104
34	Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose. Green Chemistry, 2018, 20, 3499-3511.	9.0	101
35	Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups. Advanced Synthesis and Catalysis, 2013, 355, 247-268.	4.3	97
36	The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite. Journal of Catalysis, 2009, 266, 79-91.	6.2	96

#	Article	IF	CITATIONS
37	Control of Al distribution in ZSM-5 by conditions of zeolite synthesis. Chemical Communications, 2003, , 1196-1197.	4.1	93
38	Controlling the Adsorption Enthalpy of CO ₂ in Zeolites by Framework Topology and Composition. ChemSusChem, 2012, 5, 2011-2022.	6.8	93
39	Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catalysis Today, 2015, 243, 158-162.	4.4	93
40	Grafting of Alumina on SBA-15: Effect of Surface Roughness. Langmuir, 2008, 24, 9837-9842.	3.5	92
41	2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Advanced Materials, 2019, 31, e1801712.	21.0	88
42	Experimental and theoretical determination of adsorption heats of CO2 over alkali metal exchanged ferrierites with different Si/Al ratio. Physical Chemistry Chemical Physics, 2010, 12, 6413.	2.8	86
43	A novel nickel metal–organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation. Dalton Transactions, 2014, 43, 3730.	3.3	83
44	Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem, 2013, 5, 1024-1031.	3.7	82
45	Decisive role of transport rate of products for zeolite para-selectivity: Effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene. Zeolites, 1996, 17, 265-271.	0.5	81
46	The Role of Template Structure and Synergism between Inorganic and Organic Structure Directing Agents in the Synthesis of UTL Zeolite. Chemistry of Materials, 2010, 22, 3482-3495.	6.7	78
47	Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts. Coordination Chemistry Reviews, 2013, 257, 3107-3124.	18.8	78
48	Metathesis of 1-octene over MoO3 supported on mesoporous molecular sieves: The influence of the support architecture. Microporous and Mesoporous Materials, 2006, 96, 44-54.	4.4	77
49	Nitrogen adsorption study of organised mesoporous alumina. Physical Chemistry Chemical Physics, 2001, 3, 5076-5081.	2.8	76
50	3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials. Chemistry of Materials, 2013, 25, 542-547.	6.7	76
51	Adsorption of CO ₂ on Sodium-Exchanged Ferrierites: The Bridged CO ₂ Complexes Formed between Two Extraframework Cations. Journal of Physical Chemistry C, 2009, 113, 2928-2935.	3.1	75
52	Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite. Microporous and Mesoporous Materials, 2011, 146, 97-105.	4.4	75
53	Zeolite (In)Stability under Aqueous or Steaming Conditions. Advanced Materials, 2020, 32, e2003264.	21.0	75
54	The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catalysis Science and Technology, 2013, 3, 2119.	4.1	74

#	Article	IF	CITATIONS
55	Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. Journal of the American Chemical Society, 2014, 136, 2511-2519.	13.7	74
56	Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction. ACS Catalysis, 2015, 5, 2596-2604.	11.2	74
57	Multinuclear MQMAS NMR Study of NH4/Na-Ferrierites. Journal of Physical Chemistry B, 1998, 102, 1372-1378.	2.6	72
58	Raman spectroscopic study of the uranyl carbonate mineral voglite. Journal of Raman Spectroscopy, 2008, 39, 374-379.	2.5	72
59	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie - International Edition, 2017, 56, 4324-4327.	13.8	70
60	Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Applied Catalysis A: General, 2005, 281, 85-91.	4.3	68
61	Surface reactivity of ZSM-5 zeolites in interaction with ketones at ambient temperature (a FT-i.r.) Tj ETQq1 1 0.78	4314 rgB1 0.5	「 /Qverlock]
62	Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel, 2016, 167, 226-239.	6.4	67
63	Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conversion and Biorefinery, 2017, 7, 289-304.	4.6	67
64	Synthesis of isomorphously substituted extra-large pore UTL zeolites. Journal of Materials Chemistry, 2012, 22, 15793.	6.7	66
65	Mechanism of n-Propyltoluene Formation in C3 Alkylation of Toluene: The Effect of Zeolite Structural Type. Journal of Catalysis, 1994, 146, 523-529.	6.2	65
66	Hydrodeoxygenation of benzophenone on Pd catalysts. Applied Catalysis A: General, 2005, 296, 169-175.	4.3	64
67	Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chemistry of Materials, 2015, 27, 4620-4629.	6.7	64
68	Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 2013, 6, 865-871.	6.8	63
69	In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nature Chemistry, 2017, 9, 1012-1018.	13.6	63
70	MWW and MFI Frameworks as Model Layered Zeolites: Structures, Transformations, Properties, and Activity. ACS Catalysis, 2021, 11, 2366-2396.	11.2	63
71	Synthesis of organized mesoporous alumina templated with ionic liquids. Microporous and Mesoporous Materials, 2006, 95, 176-179.	4.4	62
72	Raman and infrared spectroscopic study of the molybdateâ€containing uranyl mineral calcurmolite. Journal of Raman Spectroscopy, 2008, 39, 779-785.	2.5	62

#	Article	IF	CITATIONS
73	The Assemblyâ€Disassemblyâ€Organizationâ€Reassembly Mechanism for 3Dâ€2Dâ€3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie - International Edition, 2014, 53, 7048-7052.	13.8	62
74	High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organised mesoporous alumina. Catalysis Communications, 2002, 3, 151-157.	3.3	60
75	Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chemistry of Materials, 2014, 26, 5789-5798.	6.7	60
76	Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on <i>cfi</i> -Type Layers. Chemistry of Materials, 2017, 29, 5605-5611.	6.7	60
77	Alkaline Modification of MCM-22 to a 3D Interconnected Pore System and its Application in Toluene Disproportionation and Alkylation. Topics in Catalysis, 2009, 52, 1190-1202.	2.8	59
78	Twinned Growth of Metalâ€Free, Triazineâ€Based Photocatalyst Films as Mixedâ€Dimensional (2D/3D) van der Waals Heterostructures. Advanced Materials, 2017, 29, 1703399.	21.0	59
79	MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous and Mesoporous Materials, 2013, 167, 44-50.	4.4	57
80	Carbon dioxide adsorption over amine modified silica: Effect of amine basicity and entropy factor on isosteric heats of adsorption. Chemical Engineering Journal, 2018, 348, 327-337.	12.7	57
81	Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites. Journal of Molecular Catalysis A, 2016, 424, 358-368.	4.8	56
82	Selective synthesis of cumene and p-cymene over Al and Fe silicates with large and medium pore structures. Microporous Materials, 1996, 6, 405-414.	1.6	55
83	High-temperature transformations of organised mesoporous alumina. Physical Chemistry Chemical Physics, 2002, 4, 4823-4829.	2.8	55
84	Catalysis by Dynamically Formed Defects in a Metal–Organic Framework Structure: Knoevenagel Reaction Catalyzed by Copper Benzeneâ€1,3,5â€ŧricarboxylate. ChemCatChem, 2014, 6, 2821-2824.	3.7	54
85	A Raman spectroscopic study of the uranyl carbonate rutherfordine. Journal of Raman Spectroscopy, 2007, 38, 1488-1493.	2.5	53
86	Factors controlling iso-/n- andpara-selectivity in the alkylation of toluene with isopropanol on molecular sieves. Applied Catalysis A: General, 1994, 108, 187-204.	4.3	52
87	Deactivation Pathways of the Catalytic Activity of Metal–Organic Frameworks in Condensation Reactions. ChemCatChem, 2013, 5, 1553-1561.	3.7	52
88	Ru-Based Complexes with Quaternary Ammonium Tags Immobilized on Mesoporous Silica as Olefin Metathesis Catalysts. ACS Catalysis, 2014, 4, 3227-3236.	11.2	52
89	Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations. Adsorption, 2009, 15, 264-270.	3.0	51
90	Grubbs Catalysts Immobilized on Mesoporous Molecular Sieves via Phosphine and Pyridine Linkers. ACS Catalysis, 2011, 1, 709-718.	11.2	51

#	Article	IF	CITATIONS
91	UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties. Catalysis Today, 2016, 277, 2-8.	4.4	51
92	Synthesis and adsorption investigations of zeolites MCM-22 andÂMCM-49 modified by alkali metal cations. Adsorption, 2007, 13, 257-265.	3.0	50
93	Mutable Lewis and BrÃ,nsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine- ¹⁵ N. Langmuir, 2011, 27, 12115-12123.	3.5	50
94	Porosity of micro/mesoporous composites. Microporous and Mesoporous Materials, 2006, 92, 154-160.	4.4	49
95	Preparation of nanosized micro/mesoporous composites. Materials Science and Engineering C, 2003, 23, 1001-1005.	7.3	48
96	Rhenium oxide supported on organized mesoporous alumina — A highly active and versatile catalyst for alkene, diene, and cycloalkene metathesis. Applied Catalysis A: General, 2006, 302, 193-200.	4.3	48
97	Synthesis and Postâ€Synthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie - International Edition, 2020, 59, 19380-19389.	13.8	48
98	High activity of iron containing metal–organic-framework in acylation of p-xylene with benzoyl chloride. Catalysis Today, 2012, 179, 85-90.	4.4	47
99	Rhenium Oxide Supported on Mesoporous Organised Alumina as a Catalyst for Metathesis of 1-Alkenes. Catalysis Letters, 2004, 97, 25-29.	2.6	46
100	Disproportionation of trimethyl benzenes over large pore zeolites: catalytic and adsorption study. Applied Catalysis A: General, 2004, 277, 191-199.	4.3	45
101	Synthesis of highly ordered MCM-41 silica with spherical particles. Microporous and Mesoporous Materials, 2007, 104, 52-58.	4.4	45
102	A comparison of the ethylation of ethylbenzene and toluene on acid, cationic and silylated ZSM-5 zeolites. Catalysis Letters, 1992, 16, 421-429.	2.6	44
103	High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives. Dalton Transactions, 2014, 43, 10501.	3.3	44
104	Some novel porous materials for selective catalytic oxidations. Materials Today, 2020, 32, 244-259.	14.2	44
105	Insertion of Internal Alkynes and Ethene into Permethylated Singly Tucked-in Titanocene. Organometallics, 2008, 27, 5532-5547.	2.3	42
106	Transalkylation of toluene with trimethylbenzenes over large-pore zeolites. Applied Catalysis A: General, 2010, 377, 99-106.	4.3	42
107	Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Applied Catalysis A: General, 2018, 549, 8-18.	4.3	41
108	Synthesis and Characterisation of Hierarchically Structured Titanium Silicaliteâ€1 Zeolites with Large Intracrystalline Macropores. Chemistry - A European Journal, 2019, 25, 14430-14440.	3.3	41

#	Article	IF	CITATIONS
109	A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis. Journal of Materials Chemistry A, 2019, 7, 7701-7709.	10.3	41
110	Guaiacol hydrodeoxygenation over Ni2P supported on 2D-zeolites. Catalysis Today, 2020, 345, 48-58.	4.4	41
111	A Raman spectroscopic study of the uranyl sulphate mineral johannite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2702-2707.	3.9	40
112	Palladium Catalysts Supported on Mesoporous Molecular Sieves Bearing Nitrogen Donor Groups: Preparation and Use in Heck and Suzuki CC Bondâ€Forming Reactions. ChemSusChem, 2009, 2, 442-451.	6.8	40
113	Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts. Catalysis Science and Technology, 2016, 6, 2775-2786.	4.1	40
114	Advances and challenges in zeolite synthesis and catalysis. Catalysis Today, 2020, 345, 2-13.	4.4	40
115	Formation of Mesopores in ZSM-5 by Carbon Templating. Studies in Surface Science and Catalysis, 2006, , 905-912.	1.5	39
116	Accessibility enhancement of TS-1-based catalysts for improving the epoxidation of plant oil-derived substrates. Catalysis Science and Technology, 2016, 6, 7280-7288.	4.1	39
117	Tuning the Porosity and Photocatalytic Performance of Triazineâ€Based Graphdiyne Polymers through Polymorphism. ChemSusChem, 2019, 12, 194-199.	6.8	39
118	To the infrared spectroscopy of natural uranyl phosphates. Physics and Chemistry of Minerals, 1984, 11, 172-177.	0.8	38
119	Post-Synthesis Modification of SSZ-35 Zeolite to Enhance the Selectivity in p-Xylene Alkylation with Isopropyl Alcohol. Topics in Catalysis, 2010, 53, 273-282.	2.8	38
120	Acidity of MCM-58 and MCM-68 zeolites in comparison with some other 12-ring zeolites. Microporous and Mesoporous Materials, 2010, 129, 256-266.	4.4	38
121	Fluorescent Sulphur―and Nitrogenâ€Containing Porous Polymers with Tuneable Donor–Acceptor Domains for Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 11916-11921.	3.3	38
122	Alkylation and disproportionation of aromatic hydrocarbons over mesoporous molecular sieves. Microporous and Mesoporous Materials, 2001, 44-45, 499-507.	4.4	37
123	The use of palladium nanoparticles supported on MCM-41 mesoporous molecular sieves in Heck reaction: A comparison of basic and neutral supports. Journal of Molecular Catalysis A, 2007, 274, 127-132.	4.8	37
124	The Role of Crystallization Parameters for the Synthesis of Germanosilicate with UTL Topology. Chemistry - A European Journal, 2008, 14, 10134-10140.	3.3	37
125	Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages. Topics in Catalysis, 2010, 53, 1457-1469.	2.8	37
126	Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation. Science Advances, 2020, 6, eaay8163.	10.3	37

#	Article	IF	CITATIONS
127	Selective synthesis of linear alkylbenzene by alkylation of benzene with 1-dodecene over desilicated zeolites. Catalysis Today, 2014, 227, 187-197.	4.4	36
128	Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption. Physical Chemistry Chemical Physics, 2010, 12, 5240.	2.8	35
129	Tailored Band Gaps in Sulfur―and Nitrogen ontaining Porous Donor–Acceptor Polymers. Chemistry - A European Journal, 2017, 23, 13023-13027.	3.3	35
130	The crucial role of clay binders in the performance of ZSM-5 based materials for biomass catalytic pyrolysis. Catalysis Science and Technology, 2019, 9, 789-802.	4.1	35
131	Preparation of heterogeneous catalysts supported on mesoporous molecular sieves modified with various N-groups and their use in the Heck reaction. Journal of Molecular Catalysis A, 2009, 302, 28-35.	4.8	34
132	Thermodynamics of CO2 adsorption on functionalized SBA-15 silica. NLDFT analysis of surface energetic heterogeneity. Physical Chemistry Chemical Physics, 2011, 13, 15468.	2.8	34
133	Hydrotreating catalysts supported on organized mesoporous alumina: Optimization of Mo deposition and promotional effects of Co and Ni. Applied Catalysis A: General, 2008, 351, 93-101.	4.3	33
134	Theoretical investigation of the FriedlÃ ¤ der reaction catalysed by CuBTC: Concerted effect of the adjacent Cu2+ sites. Catalysis Today, 2013, 204, 101-107.	4.4	33
135	Theoretical investigation of layered zeolites with MWW topology: MCM-22P vs. MCM-56. Dalton Transactions, 2014, 43, 10443-10450.	3.3	33
136	Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science and Technology, 2018, 8, 4690-4701.	4.1	33
137	Permethyltitanocene-bis(trimethylsilyl) acetylene, an efficient catalyst for the head-to-tail dimerization of 1-alkynes. Journal of Organometallic Chemistry, 1996, 509, 235-240.	1.8	32
138	High-Resolution Adsorption of Nitrogen on Mesoporous Alumina. Langmuir, 2004, 20, 7532-7539.	3.5	32
139	Pyrrole as a Probe Molecule for Characterization of Basic Sites in ZSM-5:Â A Combined FTIR Spectroscopy and Computational Study. Journal of Physical Chemistry B, 2004, 108, 16012-16022.	2.6	32
140	Bidimensional ZSM-5 zeolites probed as catalysts for polyethylene cracking. Catalysis Science and Technology, 2016, 6, 2754-2765.	4.1	32
141	The effect of pore size dimensions in isoreticular zeolites on carbon dioxide adsorption heats. Journal of CO2 Utilization, 2018, 24, 157-163.	6.8	32
142	Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catalysis Today, 2018, 304, 30-38.	4.4	32
143	From Doubleâ€Fourâ€Ring Germanosilicates to New Zeolites: In Silico Investigation. ChemPhysChem, 2014, 15, 2972-2976.	2.1	31
144	Catalytic cracking of vacuum gasoil over -SVR, ITH, and MFI zeolites as FCC catalyst additives. Fuel Processing Technology, 2017, 161, 23-32.	7.2	31

#	Article	IF	CITATIONS
145	Microporous Lead–Organic Framework for Selective CO ₂ Adsorption and Heterogeneous Catalysis. Inorganic Chemistry, 2018, 57, 1774-1786.	4.0	31
146	Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous and Mesoporous Materials, 2019, 279, 364-370.	4.4	31
147	Preparation and catalytic application of MCM-41 modified with a ferrocene carboxyphosphine and a ruthenium complex. Journal of Molecular Catalysis A, 2004, 224, 161-169.	4.8	30
148	Catalytic transformation of methyl benzenes over zeolite catalysts. Applied Catalysis A: General, 2011, 394, 176-190.	4.3	30
149	Titanium impregnated borosilicate zeolites for epoxidation catalysis. Microporous and Mesoporous Materials, 2015, 212, 28-34.	4.4	30
150	Effect of hierarchical porosity in Beta zeolites on the Beckmann rearrangement of oximes. Catalysis Science and Technology, 2017, 7, 181-190.	4.1	30
151	The use of palladium nanoparticles supported with MCM-41 and basic (Al)MCM-41 mesoporous sieves in microwave-assisted Heck reaction. Catalysis Today, 2008, 132, 63-67.	4.4	29
152	Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction. Journal of Molecular Catalysis A, 2010, 329, 13-20.	4.8	29
153	The effect of substrate size in the Beckmann rearrangement: MOFs vs. zeolites. Catalysis Today, 2013, 204, 94-100.	4.4	29
154	Intercalation chemistry of layered zeolite precursor IPC-1P. Catalysis Today, 2014, 227, 37-44.	4.4	29
155	Post-synthesis incorporation of Al into germanosilicate ITH zeolites: the influence of treatment conditions on the acidic properties and catalytic behavior in tetrahydropyranylation. Catalysis Science and Technology, 2015, 5, 2973-2984.	4.1	29
156	Baeyer–Villiger Oxidation of Cyclic Ketones by Using Tin–Silica Pillared Catalysts. ChemCatChem, 2017, 9, 3063-3072.	3.7	29
157	Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nature Communications, 2019, 10, 5129.	12.8	29
158	Titanium-catalyzed cycloaddition reactions of phenyl(trimethylsilyl)acetylene to conjugated dienes and 1,3,5-cycloheptatriene. 1-Phenyl-2-(trimethylsilyl)-cyclohexa-1,4-dienes and their aromatization. Journal of Organometallic Chemistry, 1992, 436, 143-153.	1.8	28
159	Re(VII) oxide on mesoporous alumina of different types—Activity in the metathesis of olefins and their oxygen-containing derivatives. Applied Catalysis A: General, 2007, 320, 56-63.	4.3	28
160	Control of CO2adsorption heats by the Al distribution in FER zeolites. Physical Chemistry Chemical Physics, 2012, 14, 1117-1120.	2.8	28
161	Metal–Organic Frameworks Mâ€MOFâ€74 and Mâ€MILâ€100: Comparison of Textural, Acidic, and Catalytic Properties. ChemPlusChem, 2016, 81, 828-835.	2.8	28
162	Comparison of oxidation properties of Nb and Sn in mesoporous molecular sieves. Applied Catalysis A: General, 2007, 321, 40-48.	4.3	27

#	Article	IF	CITATIONS
163	Remarkable catalytic properties of hierarchical zeolite-Beta in epoxide rearrangement reactions. Catalysis Today, 2015, 243, 141-152.	4.4	27
164	New catalytic materials for energy and chemistry in transition. Chemical Society Reviews, 2018, 47, 8066-8071.	38.1	27
165	Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide Intermediate. Catalysis Letters, 2009, 128, 318-322.	2.6	26
166	Comparison of Activity and Selectivity of SSZ-33 Based Catalyst with other Zeolites in Toluene Disproportionation. Topics in Catalysis, 2009, 52, 140-147.	2.8	26
167	Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite. Catalysis Today, 2012, 179, 61-72.	4.4	26
168	New inorganic–organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis. Catalysis Today, 2012, 187, 97-103.	4.4	26
169	A novel zinc(<scp>ii</scp>) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties. Dalton Transactions, 2016, 45, 1233-1242.	3.3	26
170	Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 2016, 7, 3589-3601.	7.4	26
171	Superior Activity of Isomorphously Substituted MOFs with MILâ€100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. ChemPlusChem, 2017, 82, 152-159.	2.8	26
172	Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem, 2018, 10, 2536-2540.	3.7	25
173	Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation. Catalysis Letters, 2018, 148, 2263-2273.	2.6	25
174	MCM-41-Immobilized [Rh(cod)OCH3]2 Complex - A Hybrid Catalyst for the Polymerization of Phenylacetylene and Its Ring-Substituted Derivatives. Macromolecular Rapid Communications, 2002, 23, 32-37.	3.9	24
175	Highly selective synthesis of acetylferrocene by acylation of ferrocene over zeolites. Applied Catalysis A: General, 2007, 327, 255-260.	4.3	24
176	Green Synthesis of Acetals/Ketals: Efficient Solvent-Free Process for the Carbonyl/Hydroxyl Group Protection Catalyzed by SBA-15 Materials. Topics in Catalysis, 2009, 52, 148-152.	2.8	24
177	Supergene mineralization of the MedvÄ›dÃn uranium deposit, KrkonoÅ¡e Mountains, Czech Republic. Journal of Geosciences (Czech Republic), 2012, , 15-56.	0.6	24
178	The importance of channel intersections in the catalytic performance of high silica stilbite. Journal of Catalysis, 2013, 298, 84-93.	6.2	24
179	Extraâ€Largeâ€Pore Zeolites with UTL Topology: Control of the Catalytic Activity by Variation in the Nature of the Active Sites. ChemCatChem, 2013, 5, 1891-1898.	3.7	24
180	Synthesis and catalytic properties of titanium containing extra-large pore zeolite CIT-5. Catalysis Today, 2014, 227, 80-86.	4.4	24

#	Article	IF	CITATIONS
181	Transformations of aromatic hydrocarbons over zeolites. Research on Chemical Intermediates, 2008, 34, 439-454.	2.7	23
182	Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything. Dalton Transactions, 2014, 43, 10548.	3.3	23
183	Surfactant-directed mesoporous zeolites with enhanced catalytic activity in tetrahydropyranylation of alcohols: Effect of framework type and morphology. Applied Catalysis A: General, 2017, 537, 24-32.	4.3	23
184	Adsorption and Diffusion of C ₁ to C ₄ Alkanes in Dual-Porosity Zeolites by Molecular Simulations. Langmuir, 2017, 33, 11126-11137.	3.5	23
185	Selective Recovery and Recycling of Germanium for the Design of Sustainable Zeolite Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 8235-8246.	6.7	23
186	Hydrogenation and Hydrogenolysis of Acetophenone. Collection of Czechoslovak Chemical Communications, 2003, 68, 1969-1984.	1.0	22
187	Micro/Mesoporous Composites. Studies in Surface Science and Catalysis, 2007, 168, 301-VI.	1.5	22
188	α-Pinene oxide isomerization: role of zeolite structure and acidity in the selective synthesis of campholenic aldehyde. Catalysis Science and Technology, 2018, 8, 2488-2501.	4.1	22
189	A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nature Protocols, 2019, 14, 781-794.	12.0	22
190	Isoreticular UTL-Derived Zeolites as Model Materials for Probing Pore Size–Activity Relationship. ACS Catalysis, 2019, 9, 5136-5146.	11.2	22
191	Grafting of palladium nanoparticles onto mesoporous molecular sieve MCM-41: Heterogeneous catalysts for the formation of an N-substituted pyrrol. Journal of Molecular Catalysis A, 2007, 263, 259-265.	4.8	21
192	Synthesis, characterization and sorption properties of zinc(II) metal–organic framework containing methanetetrabenzoate ligand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 101-107.	4.7	21
193	A New Family of Twoâ€Dimensional Zeolites Prepared from the Intermediate Layered Precursor IPCâ€3P Obtained during the Synthesis of TUN Zeolite. Chemistry - A European Journal, 2013, 19, 13937-13945.	3.3	21
194	Annulation of Phenols: Catalytic Behavior of Conventional and 2 D Zeolites. ChemCatChem, 2014, 6, 1919-1927.	3.7	21
195	Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption. Physical Chemistry Chemical Physics, 2016, 18, 15269-15277.	2.8	21
196	Pressure-induced chemistry for the 2D to 3D transformation of zeolites. Journal of Materials Chemistry A, 2018, 6, 5255-5259.	10.3	21
197	The BrĂ,nsted acidity of three- and two-dimensional zeolites. Microporous and Mesoporous Materials, 2019, 282, 121-132.	4.4	21
198	Incorporation of Aluminum and Iron Into the ZSM-12 Zeolite: Synthesis and Characterization of Acid Sites, Collection of Czechoslovak Chemical Communications, 2002, 67, 1760-1778	1.0	19

ЈіÅ™Ã-ÄŒејка

#	Article	IF	CITATIONS
199	Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 2087-2096.	2.2	19
200	Consecutive interlayer disassembly–reassembly during alumination of UOV zeolites: insight into the mechanism. Journal of Materials Chemistry A, 2017, 5, 22576-22587.	10.3	19
201	Needs and Gaps for Catalysis in Addressing Transitions in Chemistry and Energy from a Sustainability Perspective. ChemSusChem, 2019, 12, 621-632.	6.8	19
202	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246, 143-148.	1.5	18
203	TUN, IMF and -SVR Zeolites; Synthesis, Properties and Acidity. Topics in Catalysis, 2010, 53, 1330-1339.	2.8	18
204	Transformation of aromatic hydrocarbons over isomorphously substituted UTL: Comparison with large and medium pore zeolites. Catalysis Today, 2013, 204, 22-29.	4.4	18
205	UTL zeolite and the way beyond. Microporous and Mesoporous Materials, 2013, 182, 229-238.	4.4	18
206	Zeolite supported palladium catalysts for hydroalkylation of phenolic model compounds. Microporous and Mesoporous Materials, 2017, 252, 116-124.	4.4	18
207	Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures. Journal of the American Chemical Society, 2021, 143, 11052-11062.	13.7	18
208	Thermal and infrared spectral analyses of sabugalite. Journal of Theoretical Biology, 1988, 33, 395-399.	1.7	17
209	Isomorphous Substitution of Si for Al, Ga, Fe, In and B in Molecular Sieves of MFI Structure. A Quantum Chemical, Ammonia Desorption and Catalytic Activity Study of Framework Si-OH-M Acid Site Strength. Collection of Czechoslovak Chemical Communications, 1993, 58, 2474-2488.	1.0	17
210	Mesoporous alumina as a support for hydrodesulfurization catalysts. Studies in Surface Science and Catalysis, 2002, , 243-250.	1.5	17
211	The Effect of Type of Acid Sites in Molecular Sieves on Activity and Selectivity in Acylation Reactions. Collection of Czechoslovak Chemical Communications, 2007, 72, 728-746.	1.0	17
212	Post-synthesis modification of TUN zeolite: Textural, acidic and catalytic properties. Catalysis Today, 2011, 168, 63-70.	4.4	17
213	Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15. Journal of Industrial and Engineering Chemistry, 2017, 53, 119-126.	5.8	17
214	Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite. Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.	6.0	17
215	Synthesis of Pt-MWW with controllable nanoparticle size. Catalysis Today, 2019, 324, 135-143.	4.4	17
216	Mordenite nanorods and nanosheets prepared in presence of gemini type surfactants. Catalysis Today, 2019, 324, 115-122.	4.4	17

#	Article	IF	CITATIONS
217	Solvent-free ketalization of polyols over germanosilicate zeolites: the role of the nature and strength of acid sites. Catalysis Science and Technology, 2020, 10, 8254-8264.	4.1	17
218	Structural Characterization of Micellar Aggregates in Sodium Dodecyl Sulfate/Aluminum Nitrate/Urea/Water System in the Synthesis of Mesoporous Alumina. Journal of Physical Chemistry B, 2004, 108, 7735-7743.	2.6	16
219	Polymerization of aliphatic alkynes with heterogeneous Mo catalysts supported on mesoporous molecular sieves. Journal of Polymer Science Part A, 2008, 46, 2593-2599.	2.3	16
220	Mesoporous Molecular Sieves as Advanced Supports for Olefin Metathesis Catalysts. Macromolecular Symposia, 2010, 293, 43-47.	0.7	16
221	The aqueous colloidal suspension of ultrathin 2D MCM-22P crystallites. Chemical Communications, 2014, 50, 7378.	4.1	16
222	Tuning of textural properties of germanosilicate zeolites ITH and IWW by acidic leaching. Journal of Energy Chemistry, 2016, 25, 318-326.	12.9	16
223	Interconversion of the CDO Layered Precursor ZSM-55 between FER and CDO Frameworks by Controlled Deswelling and Reassembly. Chemistry of Materials, 2016, 28, 3616-3619.	6.7	16
224	The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.	4.4	16
225	Three-dimensional 10-ring zeolites: The activities in toluene alkylation and disproportionation. Catalysis Today, 2016, 259, 97-106.	4.4	16
226	Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Transactions, 2018, 47, 3029-3037.	3.3	16
227	Vapor phase acylation of guaiacol with acetic acid over micro, nano and hierarchical MFI and BEA zeolites. Applied Catalysis B: Environmental, 2021, 285, 119826.	20.2	16
228	Contribution of Metal Cations to the Para-Selectivity of Small Crystals of H-Zsm-5 Zeolite in Toluene Alkylation with Ethylene. Studies in Surface Science and Catalysis, 1991, , 347-354.	1.5	15
229	Transition State and Diffusion Controlled Shape Selectivity in the Formation and Reaction of Xylenes. Studies in Surface Science and Catalysis, 1994, 83, 287-294.	1.5	15
230	Theoretical Model of the n-Propylbenzene Formation in the Benzene Isopropylation over Zeolites. An Anti-Markovnikov-Type Proton Addition Promoted by the Steric Effect of MFI and MEL Zeolite Channels. Journal of Physical Chemistry B, 1998, 102, 7169-7175.	2.6	15
231	Zeolites Efficiently Promote the Cyclization of Nonactivated Unsaturated Alcohols. Chemistry - A European Journal, 2010, 16, 12079-12082.	3.3	15
232	Experimental and theoretical study of pyrazole N-alkylation catalyzed by basic modified molecular sieves. Chemical Engineering Journal, 2010, 161, 377-383.	12.7	15
233	Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Transactions, 2018, 47, 3084-3092.	3.3	14
234	Incorporation of Ti as a Pyramidal Framework Site in the Monoâ€Layered MCMâ€56 Zeolite and its Oxidation Activity. ChemCatChem, 2019, 11, 520-527.	3.7	14

#	Article	IF	CITATIONS
235	Hierarchical Beta zeolites as catalysts in a one-pot three-component cascade Prins–Friedel–Crafts reaction. Green Chemistry, 2020, 22, 6992-7002.	9.0	14
236	Hoveyda–Grubbs first generation type catalyst immobilized on mesoporous molecular sieves. Journal of Molecular Catalysis A, 2013, 378, 184-192.	4.8	13
237	Synthesis and catalytic evaluation in the Heck reaction of deposited palladium catalysts immobilized via amide linkers and their molecular analogues. Catalysis Today, 2014, 227, 207-214.	4.4	13
238	Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials, 2015, 202, 297-302.	4.4	13
239	Selective production of xylenes from alkyl-aromatics and heavy reformates over dual-zeolite catalyst. Catalysis Today, 2015, 243, 118-127.	4.4	13
240	The effect of alkylation route on ethyltoluene production over different structural types of zeolites. Chemical Engineering Journal, 2016, 306, 1071-1080.	12.7	13
241	Fine-tuning hierarchical ZSM-5 zeolite by controlled aggregation of protozeolitic units functionalized with tertiary amine-containing organosilane. Microporous and Mesoporous Materials, 2020, 303, 110189.	4.4	13
242	The effect of zeolite structure on the disproportionation of trimethylbenzenes to xylenes and tetramethylbenzenes. Studies in Surface Science and Catalysis, 1999, 125, 351-358.	1.5	12
243	The Influence of pH on the Structure of Templated Mesoporous Silicas Prepared from Sodium Metasilicate. Collection of Czechoslovak Chemical Communications, 2001, 66, 555-566.	1.0	12
244	Oxidation of adamantanone and norcamphor over tin containing mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, 158, 1589-1596.	1.5	12
245	Recent trends in the synthesis of molecular sieves. Studies in Surface Science and Catalysis, 2005, , 111-134.	1.5	12
246	Selective Monoacylation of Ferrocene with Bulky Acylating Agents over Mesoporous Sieve AlKITâ€5. Chemistry - A European Journal, 2010, 16, 7773-7780.	3.3	12
247	Reductive dehalogenation of aryl halides over palladium catalysts deposited on SBA-15 type molecular sieve modified with amine donor groups. Journal of Molecular Catalysis A, 2011, 341, 97-102.	4.8	12
248	Adsorption of Carbon Dioxide on Sodium and Potassium Forms of STIâ€Zeolite. ChemPlusChem, 2012, 77, 675-681.	2.8	12
249	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie, 2017, 129, 4388-4391.	2.0	12
250	Untangling the role of the organosilane functional groups in the synthesis of hierarchical ZSM-5 zeolite by crystallization of silanized protozeolitic units. Catalysis Today, 2020, 345, 27-38.	4.4	12
251	Tuning the CHA framework composition by isomorphous substitution for CO2/CH4 separation. Chemical Engineering Journal, 2022, 429, 131277.	12.7	12
252	The Role of Water Loading and Germanium Content in Germanosilicate Hydrolysis. Journal of Physical Chemistry C, 2021, 125, 23744-23757.	3.1	12

JIÅ™Ã-ÄŒEJKA

#	Article	IF	CITATIONS
253	The Effect of Extra-Framework Aluminum in Dealuminated ZSM-5 Zeolites on the Transformation of Aromatic Hydrocarbons. Collection of Czechoslovak Chemical Communications, 1995, 60, 412-420.	1.0	11
254	Titanium-Catalyzed [4+2] and [6+2] Cycloadditions of 1,4-Bis(trimethylsilyl)buta-1,3-diyne. Collection of Czechoslovak Chemical Communications, 1996, 61, 1722-1728.	1.0	11
255	Preparation and Crystal Structure of Bis(tert-butyltetramethylcyclopentadienyl)dichlorotitanium. Collection of Czechoslovak Chemical Communications, 2005, 70, 1589-1603.	1.0	11
256	Metathesis of linear α-olefins with MoO3 supported on MCM-41 catalyst. Studies in Surface Science and Catalysis, 2005, 156, 795-802.	1.5	11
257	Characterization of textural and surface properties of mesoporous metathesis catalysis. Studies in Surface Science and Catalysis, 2007, 170, 1145-1152.	1.5	11
258	SBA-15 as a Support for Effective Olefin Metathesis Catalysts. Catalysts, 2019, 9, 743.	3.5	11
259	Structural transformation and chemical modifications of the unusual layered zeolite MWW form SSZ-70. Catalysis Today, 2020, 354, 133-140.	4.4	11
260	Basolites: A type of Metal Organic Frameworks highly efficient in the one-pot synthesis of quinoxalines from α-hydroxy ketones under aerobic conditions. Catalysis Today, 2020, 345, 258-266.	4.4	11
261	Electronic/steric effects in hydrogenation of nitroarenes over the heterogeneous Pd@BEA and Pd@MWW catalysts. Catalysis Today, 2020, 345, 39-47.	4.4	11
262	Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites. Chemistry of Materials, 2021, 33, 1228-1237.	6.7	11
263	Imidazolium-type ionic liquid-assisted formation of the MFI zeolite loaded with metal nanoparticles for hydrogenation reactions. Chemical Engineering Journal, 2021, 412, 128599.	12.7	11
264	The Effect of Synthesis Conditions and Nature of Heteroelement on Acidic Properties of Isomorphously Substituted UTL Zeolites. Advanced Porous Materials, 2013, 1, 103-113.	0.3	11
265	Deactivation and Coking of Hzsm5 Catalysts During Alkylation Reactions. Studies in Surface Science and Catalysis, 1994, 88, 241-248.	1.5	10
266	Incorporation of Aluminium and Iron into the Zeolite MCM-58. European Journal of Inorganic Chemistry, 2005, 2005, 1154-1161.	2.0	10
267	A Raman spectroscopic study of the uranyl phosphate mineral threadgoldite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 797-801.	3.9	10
268	Preparation of MCM-41 silica using the cationic surfactant blend. Adsorption, 2007, 13, 247-256.	3.0	10
269	Sonocatalysis and zeolites: An efficient route to prepare N-alkylimidazoles. Applied Catalysis A: General, 2008, 338, 130-135.	4.3	10
270	The Effect of Zeolite Structure on the Activity and Selectivity in p-Xylene Alkylation with Isopropyl Alcohol. Catalysis Letters, 2009, 131, 393-400.	2.6	10

#	Article	IF	CITATIONS
271	Intramolecular Hydroalkoxylation of Nonâ€Activated CC Bonds Catalysed by Zeolites: An Experimental and Theoretical Study. ChemSusChem, 2013, 6, 1021-1030.	6.8	10
272	Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions. Frontiers in Chemistry, 2013, 1, 11.	3.6	10
273	The effect of hot liquid water treatment on the properties and catalytic activity of MWW zeolites with various layered structures. Catalysis Today, 2018, 304, 22-29.	4.4	10
274	Magneto-structural correlations of novel kagomé-type metal organic frameworks. Journal of Materials Chemistry C, 2019, 7, 6692-6697.	5.5	10
275	H/D reactivity and acidity of BrÃ,nsted acid sites of MWW zeolites: Comparison with MFI zeolite. Applied Catalysis A: General, 2019, 575, 180-186.	4.3	10
276	Introduction of tin into mesoporous molecular sieves for oxidation of adamantanone. Studies in Surface Science and Catalysis, 2005, 156, 779-786.	1.5	9
277	Coordination of extraframework Li+ cation in the MCM-22 and MCM-36 zeolite: FTIR study of CO adsorbed. Adsorption, 2013, 19, 455-463.	3.0	9
278	Atomic Force Microscopy of Novel Zeolitic Materials Prepared by Topâ€Đown Synthesis and ADOR Mechanism. Chemistry - A European Journal, 2014, 20, 10446-10450.	3.3	9
279	Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P. Dalton Transactions, 2016, 45, 14124-14130.	3.3	9
280	The effect of the zeolite pore size on the Lewis acid strength of extra-framework cations. Physical Chemistry Chemical Physics, 2016, 18, 18063-18073.	2.8	9
281	Controlling dispersion and accessibility of Pd nanoparticles via 2D-to-3D zeolite transformation for shape-selective catalysis: Pd@MWW case. Materials Today Nano, 2019, 8, 100056.	4.6	9
282	Nanosponge TSâ€1: A Fully Crystalline Hierarchical Epoxidation Catalyst. Advanced Materials Interfaces, 2021, 8, 2001288.	3.7	9
283	Preparation and Properties of Isomeric N-(4-Substituted Benzylidene)-4-ethynylanilines and 4-Substituted N-(4-Ethynylbenzylidene)anilines. Collection of Czechoslovak Chemical Communications, 2000, 65, 203-215.	1.0	8
284	Ferrierite and MCM-22 for the CO2 adsorption. Studies in Surface Science and Catalysis, 2008, , 603-606.	1.5	8
285	Transalkylation of ethyl benzene with triethylbenzene over ZSM-5 zeolite catalyst. Chemical Engineering Journal, 2010, 163, 98-107.	12.7	8
286	Microwave heating and the fast ADOR process for preparing zeolites. Journal of Materials Chemistry A, 2017, 5, 8037-8043.	10.3	8
287	Experimental and theoretical study of propene adsorption on alkali metal exchanged FER zeolites. Microporous and Mesoporous Materials, 2019, 280, 203-210.	4.4	8
288	In situ studies of various forms of iron in MFI ferrisilicates. Studies in Surface Science and Catalysis, 1995, 94, 219-225.	1.5	7

#	Article	IF	CITATIONS
289	Contribution of framework and extraframework Al and Fe cations in ZSM-5 to disproportionation and C3 alkylation of toluene. Studies in Surface Science and Catalysis, 1995, , 401-408.	1.5	7
290	Solvent-Induced Textural Changes of As-Synthesized Mesoporous Alumina, As Reported by Spin Probe Electron Spin Resonance Spectroscopy. Langmuir, 2005, 21, 2591-2597.	3.5	7
291	Synthesis, modification and characterization of MWW framework topology materials. Studies in Surface Science and Catalysis, 2007, 170, 610-615.	1.5	7
292	Acylation of Cyclohexene and 1-Methylcyclohexene Over Zeolites and Mesoporous Molecular Sieves. Topics in Catalysis, 2009, 52, 618-626.	2.8	7
293	Catalytic and photocatalytic epoxidation over microporous titanosilicates with nanosheet or layered structure. Catalysis Today, 2021, 376, 28-35.	4.4	7
294	Structure and Shape-Selective Properties of MFI Type Ferrisilicates. A Comparison with Aluminosilicate Analogues. Collection of Czechoslovak Chemical Communications, 1992, 57, 799-808.	1.0	7
295	Laboratory Oxidation of Fossil Organic Matter Studiedby in situ Infrared Spectroscopy, Rock-Eval Pyrolysis and Pyrolysis-Gas Chromatography-Mass Spectrometry. Collection of Czechoslovak Chemical Communications, 1997, 62, 364-374.	1.0	7
296	Kinetic and Theoretical Study of the Effect of Molecular Sieve Structure on the Selectivity to Propylbenzenes in Alkylation of Benzene with Isopropyl Alcohol. Collection of Czechoslovak Chemical Communications, 1998, 63, 1769-1780.	1.0	7
297	Micro/Mesoporous Composites Based on Colloidal Zeolite Grown in Mesoporous Matrix. Collection of Czechoslovak Chemical Communications, 2005, 70, 1829-1847.	1.0	7
298	MWW-type zeolite nanostructures for a one-pot three-component Prins–Friedel–Crafts reaction. Inorganic Chemistry Frontiers, 2022, 9, 1244-1257.	6.0	7
299	(Al)-ZSM-12: Synthesis and modification of acid sites. Studies in Surface Science and Catalysis, 2002, , 247-254.	1.5	6
300	The effect of zeolite pore size and channel dimensionality on the selective acylation of naphthalene with acetic anhydride. Studies in Surface Science and Catalysis, 2002, 142, 627-634.	1.5	6
301	Zeolite Silylation for the Enhancement of para-Selectivity in Toluene Alkylation with Ethylene. Collection of Czechoslovak Chemical Communications, 1997, 62, 337-346.	1.0	5
302	Zeolite beta: selective molecular sieve for synthesis of xylenes from trimethylbenzenes. Studies in Surface Science and Catalysis, 2000, 130, 2627-2632.	1.5	5
303	(Al)MCM-41 Molecular Sieves. Aluminium Distribution, Uniformity and Structure of Inner Surface. Collection of Czechoslovak Chemical Communications, 2003, 68, 1998-2018.	1.0	5
304	Zeolites: Structures and Inclusion Properties. , 2004, , 1623-1630.		5
305	Microporous and mesoporous molecular sieves for alkylation of toluene with olefins. Studies in Surface Science and Catalysis, 2005, 158, 1945-1952.	1.5	5
306	Mesoporous Molecular Sieves as Supports for Metathesis Catalysts. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 151-166.	0.1	5

ЈіÅ™Ã-ÄŒејка

#	Article	IF	CITATIONS
307	27Al and 29Si MAS-NMR study of the MCM-22 zeolite modified by steam and alkaline treatments. Studies in Surface Science and Catalysis, 2008, 174, 937-940.	1.5	5
308	Effect of Framework Charge Density on Catalytic Activity of Copper Loaded Molecular Sieves of Chabazite Structure in Nitrogen(II) Oxide Decomposition. Collection of Czechoslovak Chemical Communications, 2000, 65, 343-351.	1.0	5
309	Titanosilicates enhance carbon dioxide photocatalytic reduction. Applied Materials Today, 2022, 26, 101392.	4.3	5
310	In situ Mössbauer study of iron containing MFI ferrisilicates: Relations to catalytic properties. Journal of Radioanalytical and Nuclear Chemistry, 1995, 190, 407-411.	1.5	4
311	Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex I.R. and MAS NMR study. Studies in Surface Science and Catalysis, 2008, , 1027-1032.	1.5	4
312	Catalysis by Mesoporous Molecular Sieves. , 2009, , 669-692.		4
313	On the location of iron and aluminium atoms in thermally activated AlMCM-58 and FeMCM-58 zeolites. Microporous and Mesoporous Materials, 2012, 151, 339-345.	4.4	4
314	A study into Stille crossâ€coupling reaction mediated by palladium catalysts deposited over siliceous supports bearing Nâ€donor groups at the surface. Applied Organometallic Chemistry, 2013, 27, 353-360.	3.5	4
315	High activity of Ga-containing nanosponge MTW zeolites in acylation of p-xylene. Catalysis Today, 2020, 345, 110-115.	4.4	4
316	Synthesis and Postâ€Synthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie, 2020, 132, 19548-19557.	2.0	4
317	Gas-phase etherification of cyclopentanol with methanol to cyclopentyl methyl ether catalyzed by zeolites. Applied Catalysis A: General, 2021, 618, 118122.	4.3	4
318	Highly selective reduction of biomass-derived furfural by tailoring the microenvironment of Rh@BEA catalysts. Catalysis Today, 2022, 390-391, 295-305.	4.4	4
319	Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P. Materials Advances, 2021, 2, 3862-3870.	5.4	4
320	Continuous monitoring of the oxidation of algal- and humic-type kerogen in a heated FTIR flow cell. Organic Geochemistry, 1998, 28, 767-772.	1.8	3
321	Ab initio quantum chemical study on the zeolite catalyzed transformations of para -xylene. Computational and Theoretical Chemistry, 2001, 540, 145-152.	1.5	3
322	Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route. Journal of Visualized Experiments, 2016, , e53463.	0.3	3
323	Synthesis of cyclohexylphenol via phenol hydroalkylation using Co2P/zeolite catalysts. Catalysis Today, 2022, 390-391, 135-145.	4.4	3
324	Nanosponge hierarchical micro-mesoporous MFI zeolites as a high-performance catalyst for the hydroamination of methyl acrylate with aniline. Microporous and Mesoporous Materials, 2022, , 112087.	4.4	3

#	Article	IF	CITATIONS
325	Adsorption of nitrogen on organized mesoporous alumina. Studies in Surface Science and Catalysis, 2002, , 429-436.	1.5	2
326	Synthesis of MCM-58: Incorporation of aluminum and iron into framework positions. Studies in Surface Science and Catalysis, 2004, 154, 863-869.	1.5	2
327	One-pot synthesis of isobutyl toluene via combined acylation and hydrogenation over Pd–Beta zeolite. Microporous and Mesoporous Materials, 2006, 90, 384-389.	4.4	2
328	Molecular sieve catalysts for metathesis reactions. Studies in Surface Science and Catalysis, 2008, 174, 61-66.	1.5	2
329	Palladium Catalysts Deposited on Functionally Modified Siliceous Supports. , 2013, , 423-458.		2
330	Novel approach towards Al-rich AFI for catalytic application. Applied Catalysis A: General, 2019, 577, 62-68.	4.3	2
331	Synthesis of aggregation-resistant MFI nanoparticles. Catalysis Today, 2020, 354, 151-157.	4.4	2
332	Mesoporous Molecular Sieves Based Catalysts for Olefin Metathesis and Metathesis Polymerization. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 101-114.	0.5	2
333	Mesoporous Molecular Sieves Immobilized Catalysts for Polymerization of Phenylacetylene and Its Derivatives. , 2003, , 155-165.		2
334	Controllable zeolite AST crystallization: between the classical and reversed crystal growth. Chemistry - A European Journal, 2022, , .	3.3	2
335	Characterization of external surface properties of zeolite ZSM-5 modifiedby 12-tungstosilicic acid. Studies in Surface Science and Catalysis, 1995, , 246-253.	1.5	1
336	Exploring the catalytic activity of regular and ultralarge-pore Nb,Sn-SBA-15 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2007, 170, 1432-1437.	1.5	1
337	AMINE-FUNCTIONALIZED SBA-15 SILICA FOR THE ADSORPTION OF CARBON DIOXIDE. , 2008, , .		1
338	CO2 Adsorption in Porous Materials. , 2013, , 535-558.		1
339	Two-Dimensional Silica-Based Inorganic Networks. , 2017, , 475-501.		1
340	LEWIS ACIDITY OF MESOPOROUS MOLECULAR SIEVES FOR ACYLATION REACTIONS. , 2008, , .		1
341	Adsorption and catalytic study of cyclopentyl methyl ether formation: structure-activity interplay in medium-pore zeolites. Applied Materials Today, 2022, 28, 101505.	4.3	1
342	Acid-Catalyzed Synthesis of Mono- and Dialkyl Benzenes over Zeolites: Active Sites, Zeolite Topology, and Reaction Mechanisms. ChemInform, 2003, 34, no.	0.0	0

#	ARTICLE	IF	CITATIONS
343	Acylation of toluene with isobutyryl chloride. Studies in Surface Science and Catalysis, 2004, , 2717-2723.	1.5	0
344	Characterization of basic sites in zeolites for toluene side-chain alkylation with methanol. Studies in Surface Science and Catalysis, 2005, , 1629-1636.	1.5	0
345	Preparation and Catalytic Evaluation of a Palladium Catalyst Deposited over Twoâ€Dimensional Zeolite ITQâ€2 Modified with Nâ€Donor Groups. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 571-576.	1.2	0