Travis S Schmidt

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7851019/travis-s-schmidt-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

50 1,279 23 35 h-index g-index citations papers 6.8 4.69 1,509 51 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
50	Ecological consequences of neonicotinoid mixtures in streams <i>Science Advances</i> , 2022 , 8, eabj8182	14.3	Ο
49	Variation in metal concentrations across a large contamination gradient is reflected in stream but not linked riparian food webs. <i>Science of the Total Environment</i> , 2021 , 769, 144714	10.2	5
48	Temporal Influences on Selenium Partitioning, Trophic Transfer, and Exposure in a Major U.S. River. <i>Environmental Science & Environmental Science & E</i>	10.3	O
47	Is there an urban pesticide signature? Urban streams in five U.S. regions share common dissolved-phase pesticides but differ in predicted aquatic toxicity. <i>Science of the Total Environment</i> , 2021 , 793, 148453	10.2	4
46	Multiple in-stream stressors degrade biological assemblages in five U.S. regions. <i>Science of the Total Environment</i> , 2021 , 800, 149350	10.2	2
45	Mercury and selenium concentrations in fishes of the Upper Colorado River Basin, southwestern United States: A retrospective assessment. <i>PLoS ONE</i> , 2020 , 15, e0226824	3.7	3
44	Time-dependent accumulation of Cd, Co, Cu, Ni, and Zn in natural communities of mayfly and caddisfly larvae: Metal sensitivity, uptake pathways, and mixture toxicity. <i>Science of the Total Environment</i> , 2020 , 732, 139011	10.2	10
43	Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 812-833	3.8	27
42	Common insecticide disrupts aquatic communities: A mesocosm-to-field ecological risk assessment of fipronil and its degradates in U.S. streams. <i>Science Advances</i> , 2020 , 6,	14.3	16
41	Biofilms Provide New Insight into Pesticide Occurrence in Streams and Links to Aquatic Ecological Communities. <i>Environmental Science & Environmental </i>	10.3	15
40	Benthic algal (periphyton) growth rates in response to nitrogen and phosphorus: Parameter estimation for water quality models. <i>Journal of the American Water Resources Association</i> , 2019 , 55, 14	179 - 149	1 ⁵
39	Linking the Agricultural Landscape of the Midwest to Stream Health with Structural Equation Modeling. <i>Environmental Science & Environmental Science &</i>	10.3	27
38	Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity. <i>Environmental Pollution</i> , 2018 , 235, 889-898	9.3	7
37	Quantifying Differences in Responses of Aquatic Insects to Trace Metal Exposure in Field Studies and Short-Term Stream Mesocosm Experiments. <i>Environmental Science & Experiments and Short-Term Stream Mesocosm Experiments</i> .	37 ई -438	4 ²⁵
36	A paradox of warming in a deep peri-Alpine lake (Lake Lugano, Switzerland and Italy). <i>Hydrobiologia</i> , 2018 , 824, 215-228	2.4	13
35	Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams. <i>Science of the Total Environment</i> , 2018 , 613-614, 1469-1488	10.2	78
34	Understanding the captivity effect on invertebrate communities transplanted into an experimental stream laboratory. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2820-2834	3.8	9

(2010-2017)

33	Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (Baetis tricaudatus): Implications for the Aquatic-Terrestrial Transfer of Metals. <i>Environmental Science & Environmental Science</i>	10.3	26	
32	In vivo isotopic fractionation of zinc and biodynamic modeling yield insights into detoxification mechanisms in the mayfly Neocloeon triangulifer. <i>Science of the Total Environment</i> , 2017 , 609, 1219-12	29 ^{O.2}	13	
31	Thermal regimes of Rocky Mountain lakes warm with climate change. <i>PLoS ONE</i> , 2017 , 12, e0179498	3.7	20	
30	Larval aquatic insect responses to cadmium and zinc in experimental streams. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 749-762	3.8	27	
29	Aquatic pollution increases use of terrestrial prey subsidies by stream fish. <i>Journal of Applied Ecology</i> , 2016 , 53, 44-53	5.8	24	
28	Bifenthrin Causes Trophic Cascade and Altered Insect Emergence in Mesocosms: Implications for Small Streams. <i>Environmental Science & Emergence</i> 2016, 50, 11974-11983	10.3	48	
27	Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development. <i>Journal of Hydrology</i> , 2015 , 524, 123-136	6	16	
26	Isotopic Insights into Biological Regulation of Zinc in Contaminated Systems. <i>Procedia Earth and Planetary Science</i> , 2015 , 13, 60-63		2	
25	Expanding metal mixture toxicity models to natural stream and lake invertebrate communities. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 761-76	3.8	32	
24	Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs. <i>Environmental Science & Description of the Environmental S</i>	10.3	81	
23	Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer. <i>Environmental Science & Environmental </i>	10.3	58	
22	Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs 2014 , 24, 235-43		72	
21	Emergence flux declines disproportionately to larval density along a stream metals gradient. <i>Environmental Science & Environmental Science & Environm</i>	10.3	64	
20	Estimating risks to aquatic life using quantile regression. Freshwater Science, 2012, 31, 709-723	2	30	
19	Characterizing invertebrate traits in wadeable streams of the contiguous US: differences among ecoregions and land uses. <i>Freshwater Science</i> , 2012 , 31, 1042-1056	2	25	
18	Geologic processes influence the effects of mining on aquatic ecosystems 2012 , 22, 870-9		34	
17	Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects. <i>Environmental Science & Environmental Science & Env</i>	10.3	45	
16	Development of a new toxic-unit model for the bioassessment of metals in streams. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2432-42	3.8	60	

15	Climate-induced changes in high elevation stream nitrate dynamics. <i>Global Change Biology</i> , 2009 , 15, 1777-1789	11.4	108
14	Geochemistry of surface water in alpine catchments in central Colorado, USA: Resolving host-rock effects at different spatial scales. <i>Applied Geochemistry</i> , 2009 , 24, 600-610	3.5	27
13	Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. <i>Frontiers in Ecology and the Environment</i> , 2009 , 7, 415-420	5.5	127
12	Boulder Creek: A stream ecosystem in an urban landscape 2008 , 217-233		
11	Modification of an ecotoxicological rating to bioassess small acid mine drainage-impacted watersheds exclusive of benthic macroinvertebrate analysis. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1091-1097	3.8	18
10	Integrative assessment of benthic macroinvertebrate community impairment from metal-contaminated waters in tributaries of the upper Powell River, Virginia, USA. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 2233-2241	3.8	23
9	Impaired Acroneuria sp. (Plecoptera, Perlidae) populations associated with aluminum contamination in neutral pH surface waters. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 42, 416-22	3.2	8
8	Integrative assessment of benthic macroinvertebrate community impairment from metal-contaminated waters in tributaries of the upper Powell River, Virginia, USA 2002 , 21, 2233		2
7	. Environmental Toxicology and Chemistry, 2002 , 21, 1091	3.8	2
6	Modification of an ecotoxicological rating to bioassess small acid mine drainage-impacted watersheds exclusive of benthic macroinvertebrate analysis. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1091-7	3.8	12
5	Integrative assessment of benthic macroinvertebrate community impairment from metal-contaminated waters in tributaries of the Upper Powell River, Virginia, USA. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 2233-41	3.8	2
4	In situ studies with Asian clams (Corbicula fluminea) detect acid mine drainage and nutrient inputs in low-order streams. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2001 , 58, 602-608	2.4	23
3	Geospatial database for regional environmental assessment of central Colorado Data Series,i-76		2
2	Selected Field Parameters from Streams and Analytical Data from Water and Macroinvertebrate Samples, Central Colorado Assessment Project, Environmental Assessment Task, 2004 and 2005. <i>US Geological Survey Open-File Report</i> ,		2
1	Lack of evidence for indirect effects from stonefly predators on primary production under future climate warming scenarios. <i>Ecoscience</i> ,1-9	1.1	