
Travis S Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7851019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and the Environment, 2009, 7, 415-420.	4.0	155
2	Climateâ€induced changes in high elevation stream nitrate dynamics. Global Change Biology, 2009, 15, 1777-1789.	9.5	122
3	Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams. Science of the Total Environment, 2018, 613-614, 1469-1488.	8.0	116
4	Metamorphosis Alters Contaminants and Chemical Tracers in Insects: Implications for Food Webs. Environmental Science & Technology, 2014, 48, 10957-10965.	10.0	105
5	Crossâ€ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs. Ecological Applications, 2014, 24, 235-243.	3.8	95
6	Emergence Flux Declines Disproportionately to Larval Density along a Stream Metals Gradient. Environmental Science & Technology, 2013, 47, 8784-8792.	10.0	76
7	Metamorphosis Enhances the Effects of Metal Exposure on the Mayfly, <i>Centroptilum triangulifer</i> . Environmental Science & Technology, 2014, 48, 10415-10422.	10.0	69
8	Development of a new toxicâ€unit model for the bioassessment of metals in streams. Environmental Toxicology and Chemistry, 2010, 29, 2432-2442.	4.3	63
9	Bifenthrin Causes Trophic Cascade and Altered Insect Emergence in Mesocosms: Implications for Small Streams. Environmental Science & Technology, 2016, 50, 11974-11983.	10.0	61
10	Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. Environmental Toxicology and Chemistry, 2020, 39, 812-833.	4.3	61
11	Linking the Agricultural Landscape of the Midwest to Stream Health with Structural Equation Modeling. Environmental Science & Technology, 2019, 53, 452-462.	10.0	56
12	Critical Tissue Residue Approach Linking Accumulated Metals in Aquatic Insects to Population and Community-Level Effects. Environmental Science & Technology, 2011, 45, 7004-7010.	10.0	49
13	Common insecticide disrupts aquatic communities: A mesocosm-to-field ecological risk assessment of fipronil and its degradates in U.S. streams. Science Advances, 2020, 6, .	10.3	38
14	Geologic processes influence the effects of mining on aquatic ecosystems. Ecological Applications, 2012, 22, 870-879.	3.8	37
15	Estimating risks to aquatic life using quantile regression. Freshwater Science, 2012, 31, 709-723.	1.8	37
16	Expanding metal mixture toxicity models to natural stream and lake invertebrate communities. Environmental Toxicology and Chemistry, 2015, 34, 761-776.	4.3	37
17	Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (<i>Baetis) Tj ETQq1 1 0.7843 & Technology, 2017, 51, 2438-2446.</i>	14 rgBT /C 10.0)verlock 10 35
18	Quantifying Differences in Responses of Aquatic Insects to Trace Metal Exposure in Field Studies and Short-Term Stream Mesocosm Experiments. Environmental Science & amp; Technology, 2018, 52, 4378-4384.	10.0	34

TRAVIS S SCHMIDT

#	Article	IF	CITATIONS
19	Biofilms Provide New Insight into Pesticide Occurrence in Streams and Links to Aquatic Ecological Communities. Environmental Science & Technology, 2020, 54, 5509-5519.	10.0	34
20	Larval aquatic insect responses to cadmium and zinc in experimental streams. Environmental Toxicology and Chemistry, 2017, 36, 749-762.	4.3	33
21	Thermal regimes of Rocky Mountain lakes warm with climate change. PLoS ONE, 2017, 12, e0179498.	2.5	33
22	Aquatic pollution increases use of terrestrial prey subsidies by stream fish. Journal of Applied Ecology, 2016, 53, 44-53.	4.0	31
23	Geochemistry of surface water in alpine catchments in central Colorado, USA: Resolving host-rock effects at different spatial scales. Applied Geochemistry, 2009, 24, 600-610.	3.0	29
24	Characterizing invertebrate traits in wadeable streams of the contiguous US: differences among ecoregions and land uses. Freshwater Science, 2012, 31, 1042-1056.	1.8	28
25	In situ studies with Asian clams (Corbicula fluminea) detect acid mine drainage and nutrient inputs in low-order streams. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 602-608.	1.4	26
26	Integrative assessment of benthic macroinvertebrate community impairment from metal ontaminated waters in tributaries of the upper Powell River, Virginia, USA. Environmental Toxicology and Chemistry, 2002, 21, 2233-2241.	4.3	26
27	Ecological consequences of neonicotinoid mixtures in streams. Science Advances, 2022, 8, eabj8182.	10.3	21
28	Modification of an ecotoxicological rating to bioassess small acid mine drainageâ€impacted watersheds exclusive of benthic macroinvertebrate analysis. Environmental Toxicology and Chemistry, 2002, 21, 1091-1097.	4.3	18
29	A paradox of warming in a deep peri-Alpine lake (Lake Lugano, Switzerland and Italy). Hydrobiologia, 2018, 824, 215-228.	2.0	18
30	Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development. Journal of Hydrology, 2015, 524, 123-136.	5.4	17
31	In vivo isotopic fractionation of zinc and biodynamic modeling yield insights into detoxification mechanisms in the mayfly Neocloeon triangulifer. Science of the Total Environment, 2017, 609, 1219-1229.	8.0	17
32	Is there an urban pesticide signature? Urban streams in five U.S. regions share common dissolved-phase pesticides but differ in predicted aquatic toxicity. Science of the Total Environment, 2021, 793, 148453.	8.0	17
33	Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity. Environmental Pollution, 2018, 235, 889-898.	7.5	15
34	Time-dependent accumulation of Cd, Co, Cu, Ni, and Zn in natural communities of mayfly and caddisfly larvae: Metal sensitivity, uptake pathways, and mixture toxicity. Science of the Total Environment, 2020, 732, 139011.	8.0	15
35	Multiple in-stream stressors degrade biological assemblages in five U.S. regions. Science of the Total Environment, 2021, 800, 149350.	8.0	14
36	Modification of an ecotoxicological rating to bioassess small acid mine drainage-impacted watersheds exclusive of benthic macroinvertebrate analysis. Environmental Toxicology and Chemistry, 2002, 21, 1091-7.	4.3	13

TRAVIS S SCHMIDT

#	Article	IF	CITATIONS
37	Benthic Algal (Periphyton) Growth Rates in Response to Nitrogen and Phosphorus: Parameter Estimation for Water Quality Models. Journal of the American Water Resources Association, 2019, 55, 1479-1491.	2.4	12
38	Variation in metal concentrations across a large contamination gradient is reflected in stream but not linked riparian food webs. Science of the Total Environment, 2021, 769, 144714.	8.0	12
39	Understanding the captivity effect on invertebrate communities transplanted into an experimental stream laboratory. Environmental Toxicology and Chemistry, 2018, 37, 2820-2834.	4.3	11
40	Mercury and selenium concentrations in fishes of the Upper Colorado River Basin, southwestern United States: A retrospective assessment. PLoS ONE, 2020, 15, e0226824.	2.5	11
41	Impaired Acroneuria sp. (Plecoptera, Perlidae) Populations Associated with Aluminum Contamination in Neutral pH Surface Waters. Archives of Environmental Contamination and Toxicology, 2002, 42, 416-422.	4.1	8
42	Temporal Influences on Selenium Partitioning, Trophic Transfer, and Exposure in a Major U.S. River. Environmental Science & Technology, 2021, 55, 3645-3656.	10.0	5
43	Sediment Sources and Sealed-Pavement Area Drive Polycyclic Aromatic Hydrocarbon and Metal Occurrence in Urban Streams. Environmental Science & Technology, 2022, 56, 1615-1626.	10.0	5
44	lsotopic Insights into Biological Regulation of Zinc in Contaminated Systems. Procedia Earth and Planetary Science, 2015, 13, 60-63.	0.6	3
45	INTEGRATIVE ASSESSMENT OF BENTHIC MACROINVERTEBRATE COMMUNITY IMPAIRMENT FROM METAL-CONTAMINATED WATERS IN TRIBUTARIES OF THE UPPER POWELL RIVER, VIRGINIA, USA. Environmental Toxicology and Chemistry, 2002, 21, 2233.	4.3	2
46	MODIFICATION OF AN ECOTOXICOLOGICAL RATING TO BIOASSESS SMALL ACID MINE DRAINAGE–IMPACTED WATERSHEDS EXCLUSIVE OF BENTHIC MACROINVERTEBRATE ANALYSIS. Environmental Toxicology and Chemistry, 2002, 21, 1091.	4.3	2
47	Integrative assessment of benthic macroinvertebrate community impairment from metal-contaminated waters in tributaries of the Upper Powell River, Virginia, USA. Environmental Toxicology and Chemistry, 2002, 21, 2233-41.	4.3	2
48	Boulder Creek: A stream ecosystem in an urban landscape. , 2008, , 217-233.		0
49	Lack of evidence for indirect effects from stonefly predators on primary production under future climate warming scenarios. Ecoscience, 0, , 1-9.	1.4	Ο