Andrew I Selwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7850895/publications.pdf

Version: 2024-02-01

63 3,047 papers citations

32 55 h-index g-index

63 63 docs citations

63 times ranked 1715 citing authors

#	Article	IF	CITATIONS
1	Solid phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. Toxicon, 2004, 44, 901-918.	1.6	181
2	Multiresidue Method for Determination of Algal Toxins in Shellfish: Single-Laboratory Validation and Interlaboratory Study. Journal of AOAC INTERNATIONAL, 2005, 88, 761-772.	1.5	180
3	Development of a sensitive and selective liquid chromatography–mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction. Journal of Chromatography A, 2015, 1387, 1-12.	3.7	180
4	First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon, 2007, 50, 292-301.	1.6	179
5	Complex toxin profiles in phytoplankton and Greenshell mussels (Perna canaliculus), revealed by LC–MS/MS analysis. Toxicon, 2002, 40, 1321-1330.	1.6	169
6	Isolation, Structural Determination and Acute Toxicity of Pinnatoxins E, F and G. Journal of Agricultural and Food Chemistry, 2010, 58, 6532-6542.	5.2	114
7	Single-Laboratory Validation of a Multitoxin Ultra-Performance LC-Hydrophilic Interaction LC-MS/MS Method for Quantitation of Paralytic Shellfish Toxins in Bivalve Shellfish. Journal of AOAC INTERNATIONAL, 2015, 98, 609-621.	1.5	111
8	Pectenotoxin and okadaic acid-based toxin profiles in Dinophysis acuta and Dinophysis acuminata from New Zealand. Harmful Algae, 2005, 4, 75-85.	4.8	98
9	Detection of tetrodotoxin from the grey side-gilled sea slug - Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand. Toxicon, 2010, 56, 466-473.	1.6	87
10	Dinoflagellate <i>Vulcanodinium rugosum</i> identified as the causative organism of pinnatoxins in Australia, New Zealand and Japan. Phycologia, 2011, 50, 624-628.	1.4	86
11	Pinnatoxins and spirolides in Norwegian blue mussels and seawater. Toxicon, 2011, 58, 700-711.	1.6	81
12	Widespread Distribution and Identification of Eight Novel Microcystins in Antarctic Cyanobacterial Mats. Applied and Environmental Microbiology, 2008, 74, 7243-7251.	3.1	77
13	Production of pinnatoxins by a peridinoid dinoflagellate isolated from Northland, New Zealand. Harmful Algae, 2010, 9, 384-389.	4.8	77
14	Toxic dinoflagellates (Dinophyceae) from Rarotonga, Cook Islands. Toxicon, 2010, 56, 751-758.	1.6	67
15	Portimine: a bioactive metabolite from the benthic dinoflagellate Vulcanodinium rugosum. Tetrahedron Letters, 2013, 54, 4705-4707.	1.4	67
16	Acute toxicity of pinnatoxins E, F and G to mice. Toxicon, 2012, 60, 995-999.	1.6	58
17	Polyhydroxylated amide analogs of yessotoxin from Protoceratium reticulatum. Toxicon, 2005, 45, 61-71.	1.6	52
18	Isolation of a 1,3-enone isomer of heptanor-41-oxoyessotoxin from Protoceratium reticulatum cultures. Toxicon, 2004, 44, 325-336.	1.6	49

#	Article	IF	Citations
19	Isolation and identification of pectenotoxins-13 and -14 from Dinophysis acuta in New Zealand. Toxicon, 2006, 48, 152-159.	1.6	47
20	Comparison of acetylcholine receptor interactions of the marine toxins, 13-desmethylspirolide C and gymnodimine. Neuropharmacology, 2012, 62, 2239-2250.	4.1	47
21	Refinement and implementation of the Lawrence method (AOAC 2005.06) in a commercial laboratory: Assay performance during an Alexandrium catenella bloom event. Harmful Algae, 2013, 24, 20-31.	4.8	47
22	Isodomoic Acid C, an Unusual Amnesic Shellfish Poisoning Toxin from Pseudo-nitzschia australis. Chemical Research in Toxicology, 2005, 18, 814-816.	3.3	43
23	A feeding study to probe the uptake of Maitotoxin by snapper (Pagrus auratus). Harmful Algae, 2014, 37, 125-132.	4.8	43
24	Multiresidue method for determination of algal toxins in shellfish: single-laboratory validation and interlaboratory study. Journal of AOAC INTERNATIONAL, 2005, 88, 761-72.	1.5	43
25	Isolation and identification of (44-R,S)-44,55-dihydroxyyessotoxin from Protoceratium reticulatum, and its occurrence in extracts of shellfish from New Zealand, Norway and Canada. Toxicon, 2005, 46, 160-170.	1.6	42
26	A dinoflagellate producer of pinnatoxin G, isolated from sub-tropical Japanese waters. Harmful Algae, 2011, 10, 702-705.	4.8	40
27	Comparative toxicity to mice of domoic acid and isodomoic acids A, B and C. Toxicon, 2008, 52, 954-956.	1.6	39
28	Pinnatoxin H: a new pinnatoxin analogue from a South China Sea Vulcanodinium rugosum isolate. Tetrahedron Letters, 2014, 55, 5508-5510.	1.4	39
29	Production of Anatoxin-a and a Novel Biosynthetic Precursor by the CyanobacteriumAphanizomenon issatschenkoi. Environmental Science & Environmental Sc	10.0	38
30	A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/MS analysis of cleavage fragments from micro-scale oxidation. Toxicon, 2012, 60, 810-820.	1.6	36
31	Development of an LC–MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. Harmful Algae, 2018, 80, 80-87.	4.8	35
32	44-Methylgambierone, a new gambierone analogue isolated from Gambierdiscus australes. Tetrahedron Letters, 2019, 60, 621-625.	1.4	34
33	Algal toxins and producers in the marine waters of Qatar, Arabian Gulf. Toxicon, 2016, 122, 54-66.	1.6	29
34	Acute Toxicities of the Saxitoxin Congeners Gonyautoxin 5, Gonyautoxin 6, Decarbamoyl Gonyautoxin 2& 2, Decarbamoyl Neosaxitoxin, C-1& 2, and C-3& 2, to Mice by Various Routes of Administration. Toxins, 2017, 9, 73.	3.4	29
35	Marine algal pinnatoxins E and F cause neuromuscular block in an inÂvitro hemidiaphragm preparation. Toxicon, 2011, 58, 693-699.	1.6	28
36	Benthic dinoflagellate toxins in two warm-temperate estuaries: Rangaunu and Parengarenga Harbours, Northland, New Zealand. Harmful Algae, 2011, 10, 559-566.	4.8	28

#	Article	IF	CITATIONS
37	Determination of Brevetoxins in Shellfish by LC/MS/MS: Single-Laboratory Validation. Journal of AOAC INTERNATIONAL, 2012, 95, 1097-1105.	1.5	27
38	Acute toxicity of dihydroanatoxin-a from Microcoleus autumnalis in comparison to anatoxin-a. Chemosphere, 2021, 263, 127937.	8.2	27
39	Amnesic Shellfish Poisoning Toxins in Shellfish: Estimation of Uncertainty of Measurement for a Liquid Chromatography/Tandem Mass Spectrometry Method. Journal of AOAC INTERNATIONAL, 2003, 86, 1095-1100.	1.5	26
40	Bioassay methods for detection of N-palmitoylbrevetoxin-B2 (BTX-B4). Toxicon, 2010, 55, 497-506.	1.6	26
41	New perspectives on biotoxin detection in Rangaunu Harbour, New Zealand arising from the discovery of pinnatoxins. Harmful Algae, 2012, 13, 34-39.	4.8	26
42	Identification of 45-hydroxy-46,47-dinoryessotoxin, 44-oxo-45,46,47-trinoryessotoxin, and 9-methyl-42,43,44,45,46,47,55-heptanor-38-en-41-oxoyessotoxin, and partial characterization of some minor yessotoxins, from Protoceratium reticulatum. Toxicon, 2006, 47, 229-240.	1.6	25
43	Isodomoic acids A and C exhibit low KA receptor affinity and reduced in vitro potency relative to domoic acid in region CA1 of rat hippocampus. Toxicon, 2007, 50, 627-638.	1.6	25
44	Semisynthesis of <i>S</i> -Desoxybrevetoxin-B2 and Brevetoxin-B2, and Assessment of Their Acute Toxicities. Chemical Research in Toxicology, 2008, 21, 944-950.	3.3	25
45	Isolation and characterization of an enzyme from the Greenshellâ,,¢ mussel Perna canaliculus that hydrolyses pectenotoxins and esters ofAokadaic acid. Toxicon, 2012, 60, 406-419.	1.6	22
46	Isolation of Yessotoxin 32-O-[β-l-arabinofuranosyl-(5′→1″)-β-l-arabinofuranoside] from Protoceratium reticulatum. Toxicon, 2006, 47, 510-516.	1.6	21
47	Paralytic shellfish toxins, including deoxydecarbamoyl-STX, in wild-caught Tasmanian abalone (Haliotis rubra). Toxicon, 2014, 90, 213-225.	1.6	19
48	The marine cytotoxin portimine is a potent and selective inducer of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 1447-1452.	4.9	19
49	Neuromuscular blocking activity of pinnatoxins E, F and G. Toxicon, 2013, 76, 214-220.	1.6	18
50	Identification of the harmful dinoflagellate Vulcanodinium rugosum recovered from a ballast tank of a globally traveled ship in Port Tampa Bay, Florida, USA. Harmful Algae, 2014, 39, 202-209.	4.8	17
51	Unambiguous identification of pectenotoxin-1 and distribution of pectenotoxins in plankton from the North Sea. Toxicon, 2008, 52, 927-935.	1.6	15
52	Pinnatoxins E, F and G target multiple nicotinic receptor subtypes. Journal of Neurochemistry, 2015, 135, 479-491.	3.9	15
53	Detection of domoic acid in rat serum and brain by direct competitive enzyme-linked immunosorbent assay (cELISA). Analytical and Bioanalytical Chemistry, 2005, 383, 783-786.	3.7	14
54	The use of a mucus trap by Dinophysis acuta for the capture of Mesodinium rubrum prey under culture conditions. Harmful Algae, 2016, 58, 1-7.	4.8	14

#	Article	IF	CITATIONS
55	Metamorphosis of the invasive ascidian <i>Ciona savignyi</i> : environmental variables and chemical exposure. PeerJ, 2016, 4, e1739.	2.0	12
56	Antifouling activity of portimine, select semisynthetic analogues, and other microalga-derived spirocyclic imines. Biofouling, 2018, 34, 950-961.	2.2	11
57	InÂvitro labelling of muscle type nicotinic receptors using a fluorophore-conjugated pinnatoxin F derivative. Toxicon, 2014, 87, 17-25.	1.6	10
58	Cyclic Imine Pinnatoxin G is Cytotoxic to Cancer Cell Lines via Nicotinic Acetylcholine Receptor-Driven Classical Apoptosis. Journal of Natural Products, 2021, 84, 2035-2042.	3.0	10
59	Determination of Soluble Immunoglobulin G in Bovine Colostrum Products by Protein G Affinity Chromatography–Turbidity Correction and Method Validation. Journal of Agricultural and Food Chemistry, 2011, 59, 5248-5256.	5.2	8
60	Paralytic shellfish toxin producing Aphanizomenon gracile strains isolated from Lake Iznik, Turkey. Toxicon, 2018, 148, 132-142.	1.6	8
61	Acute toxicity of decarbamoyl gonyautoxin 1&4 to mice by various routes of administration. Toxicon, 2021, 204, 56-63.	1.6	5
62	Investigation of tutin, a naturally-occurring plant toxin, as a novel, culturally acceptable rodenticide in New Zealand. New Zealand Journal of Ecology, 2019, 43, .	1.1	1
63	Amnesic shellfish poisoning toxins in shellfish: estimation of uncertainty of measurement for a liquid chromatography/tandem mass spectrometry method. Journal of AOAC INTERNATIONAL, 2003, 86, 1095-100.	1.5	1