Liang-Hong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7850779/publications.pdf

Version: 2024-02-01

92 papers 4,283 citations

36 h-index 62 g-index

93 all docs 93 docs citations

93 times ranked 5990 citing authors

#	Article	IF	CITATIONS
1	Functions and performance of ionic liquids in enhancing electrocatalytic hydrogen evolution reactions: a comprehensive review. RSC Advances, 2022, 12, 19452-19469.	1.7	11
2	Perfluorooctanoic acid alternatives hexafluoropropylene oxides exert male reproductive toxicity by disrupting blood-testis barrier. Science of the Total Environment, 2022, 846, 157313.	3.9	18
3	The identification of the major contributors in atmospheric particulate matter to oxidative stress using surrogate particles. Environmental Science: Nano, 2021, 8, 527-542.	2.2	0
4	Environmental Estrogens and Their Biological Effects through GPER Mediated Signal Pathways. Environmental Pollution, 2021, 278, 116826.	3.7	28
5	Parabens as chemicals of emerging concern in the environment and humans: A review. Science of the Total Environment, 2021, 778, 146150.	3.9	116
6	A High-Throughput Platform for the Rapid Quantification of Phosphorylated Histone H2AX in Cell Lysates Based on Microplate Electrochemiluminescence Immunosensor Array. ACS Sensors, 2021, 6, 3724-3732.	4.0	10
7	Binding and activity of bisphenol analogues to human peroxisome proliferator-activated receptor $\hat{l}^2 \hat{l}'$. Ecotoxicology and Environmental Safety, 2021, 226, 112849.	2.9	8
8	Interplay between engineered nanomaterials and microbiota. Environmental Science: Nano, 2020, 7, 2454-2485.	2.2	21
9	Receptor-Bound Perfluoroalkyl Carboxylic Acids Dictate Their Activity on Human and Mouse Peroxisome Proliferator-Activated Receptor γ. Environmental Science & Echnology, 2020, 54, 9529-9536.	4.6	12
10	Dynamic monitoring and regulation of pentachlorophenol photodegradation process by chemiluminescence and TiO2/PDA. Journal of Hazardous Materials, 2020, 399, 123073.	6.5	30
11	Eco-Corona vs Protein Corona: Effects of Humic Substances on Corona Formation and Nanoplastic Particle Toxicity in <i>Daphnia magna</i> . Environmental Science & Environmental Science, 2020, 54, 8001-8009.	4.6	111
12	Perfluoroalkyl Substances Stimulate Insulin Secretion by Islet \hat{l}^2 Cells via G Protein-Coupled Receptor 40. Environmental Science & Environmenta	4.6	36
13	Chlorinated Polyfluoroalkylether Sulfonic Acids Exhibit Stronger Estrogenic Effects than Perfluorooctane Sulfonate by Activating Nuclear Estrogen Receptor Pathways. Environmental Science & Environme	4.6	39
14	Microplastics from consumer plastic food containers: Are we consuming it?. Chemosphere, 2020, 253, 126787.	4.2	196
15	Binding and activation of estrogen related receptor \hat{I}^3 as possible molecular initiating events of hydroxylated benzophenones endocrine disruption toxicity. Environmental Pollution, 2020, 263, 114656.	3.7	13
16	Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups. Journal of Environmental Sciences, 2019, 77, 198-209.	3.2	59
17	New insights into mechanism of bisphenol analogue neurotoxicity: implications of inhibition of O-GlcNAcase activity in PC12 cells. Archives of Toxicology, 2019, 93, 2661-2671.	1.9	11
18	Investigation of binding and activity of perfluoroalkyl substances to the human peroxisome proliferator-activated receptor \hat{l}^2/\hat{l}' . Environmental Sciences: Processes and Impacts, 2019, 21, 1908-1914.	1.7	26

#	Article	IF	CITATIONS
19	Estrogen-related receptor \hat{I}^3 is a novel target for Lower-Chlorinated Polychlorinated Biphenyls and their hydroxylated and sulfated metabolites. Environmental Pollution, 2019, 254, 113088.	3.7	14
20	Carbon Nanomaterials Stimulate HMGB1 Release From Macrophages and Induce Cell Migration and Invasion. Toxicological Sciences, 2019, 172, 398-410.	1.4	17
21	Comparative in Vitro and in Vivo Evaluation of the Estrogenic Effect of Hexafluoropropylene Oxide Homologues. Environmental Science & Environmental Sc	4.6	56
22	Binding and activity of sulfated metabolites of lower-chlorinated polychlorinated biphenyls towards thyroid hormone receptor alpha. Ecotoxicology and Environmental Safety, 2019, 180, 686-692.	2.9	12
23	Surface Bridge Hydroxyl-Mediated Promotion of Reactive Oxygen Species in Different Particle Size TiO ₂ Suspensions. Journal of Physical Chemistry Letters, 2019, 10, 3024-3028.	2.1	36
24	Binding and activity of polybrominated diphenyl ether sulfates to thyroid hormone transport proteins and nuclear receptors. Environmental Sciences: Processes and Impacts, 2019, 21, 950-956.	1.7	22
25	Facet-mediated interaction between humic acid and TiO ₂ nanoparticles: implications for aggregation and stability kinetics in aquatic environments. Environmental Science: Nano, 2019, 6, 1754-1764.	2.2	10
26	Humic acid alleviates the toxicity of polystyrene nanoplastic particles to <i>Daphnia magna</i> Environmental Science: Nano, 2019, 6, 1466-1477.	2.2	83
27	XRCC4, which is inhibited by PFDA, regulates DNA damage repair and cell chemosensitivity. Journal of Cellular Biochemistry, 2019, 120, 12665-12676.	1.2	8
28	Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV. Journal of Hazardous Materials, 2019, 369, 719-726.	6.5	80
29	Adipogenic Activity of Oligomeric Hexafluoropropylene Oxide (Perfluorooctanoic Acid Alternative) through Peroxisome Proliferator-Activated Receptor Î ³ Pathway. Environmental Science & Eamp; Technology, 2019, 53, 3287-3295.	4.6	60
30	A formation model of superoxide radicals photogenerated in nano-TiO ₂ suspensions. RSC Advances, 2019, 9, 29429-29432.	1.7	3
31	Dynamic Tracking of Highly Toxic Intermediates in Photocatalytic Degradation of Pentachlorophenol by Continuous Flow Chemiluminescence. Environmental Science & Environmental Science & 2018, 52, 2870-2877.	4.6	38
32	Organophosphate Esters Bind to and Inhibit Estrogen-Related Receptor \hat{l}^3 in Cells. Environmental Science and Technology Letters, 2018, 5, 68-73.	3.9	26
33	Chlorinated Polyfluorinated Ether Sulfonates Exhibit Higher Activity toward Peroxisome Proliferator-Activated Receptors Signaling Pathways than Perfluorooctanesulfonate. Environmental Science & Envi	4.6	108
34	Inhibition of O-linked N-acetylglucosamine transferase activity in PC12 cells – A molecular mechanism of organophosphate flame retardants developmental neurotoxicity. Biochemical Pharmacology, 2018, 152, 21-33.	2.0	28
35	Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway inÂvitro and inÂvivo. Environmental Pollution, 2018, 237, 1072-1079.	3.7	132
36	Hydroxylated Polybrominated Biphenyl Ethers Exert Estrogenic Effects via Non-Genomic G Protein–Coupled Estrogen Receptor Mediated Pathways. Environmental Health Perspectives, 2018, 126, 057005.	2.8	23

#	Article	IF	CITATIONS
37	Facet-Dependent Interfacial Charge Transfer in Fe(III)-Grafted TiO ₂ Nanostructures Activated by Visible Light. ACS Catalysis, 2018, 8, 9399-9407.	5.5	50
38	Direct evidence for surface long-lived superoxide radicals photo-generated in TiO ₂ and other metal oxide suspensions. Physical Chemistry Chemical Physics, 2018, 20, 18978-18985.	1.3	37
39	Chlorinated Polyfluoroalkylether Sulfonates Exhibit Similar Binding Potency and Activity to Thyroid Hormone Transport Proteins and Nuclear Receptors as Perfluorooctanesulfonate. Environmental Science & Environmental Scienc	4.6	58
40	Perfluoroalkyl acid exposure induces protective mitochondrial and endoplasmic reticulum autophagy in lung cells. Archives of Toxicology, 2018, 92, 3131-3147.	1.9	31
41	Structure-Dependent Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated Metabolites on Estrogen Related Receptor \hat{I}^3 : in Vitro and in Silico Study. Environmental Science & Echnology, 2018, 52, 8894-8902.	4.6	29
42	Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation. Biosensors and Bioelectronics, 2017, 95, 94-99.	5.3	18
43	Length effects on the dynamic process of cellular uptake and exocytosis of single-walled carbon nanotubes in murine macrophage cells. Scientific Reports, 2017, 7, 1518.	1.6	47
44	Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway. Environmental Science & Estrogen Receptor Pathway. Environmental Science & Estrogen Receptor Pathway.	4.6	115
45	Quantitative Analysis of Reactive Oxygen Species Photogenerated on Metal Oxide Nanoparticles and Their Bacteria Toxicity: The Role of Superoxide Radicals. Environmental Science & Echnology, 2017, 51, 10137-10145.	4.6	161
46	Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. Archives of Toxicology, 2017, 91, 1697-1707.	1.9	7
47	Unprecedented Two-Step Chemiluminescence of Polyamine-Functionalized Carbon Nanodots Induced by Fenton-Like System. Journal of Analysis and Testing, 2017, 1, 315-321.	2.5	2
48	Perfluorodecanoic acid (PFDA) promotes gastric cell proliferation via sPLA2-IIA. Oncotarget, 2017, 8, 50911-50920.	0.8	16
49	Biodegradation of Single-Walled Carbon Nanotubes in Macrophages through Respiratory Burst Modulation. International Journal of Molecular Sciences, 2016, 17, 409.	1.8	32
50	Haze and health. National Science Review, 2016, 3, 412-413.	4.6	5
51	Carbon Nanotubes: Crucial Role of P2X7 Receptor in Regulating Exocytosis of Single-Walled Carbon Nanotubes in Macrophages (Small 43/2016). Small, 2016, 12, 5912-5912.	5.2	1
52	Donor/acceptor nanoparticle pair-based singlet oxygen channeling homogenous chemiluminescence immunoassay for quantitative determination of bisphenol A. Analytical and Bioanalytical Chemistry, 2016, 408, 8795-8804.	1.9	34
53	Binding interactions of perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological implications. Toxicology, 2016, 366-367, 32-42.	2.0	88
54	UV irradiation mediated aggregation of TiO2 nanoparticles in simulated aquatic system. NanoImpact, 2016, 3-4, 75-80.	2.4	8

#	Article	IF	CITATIONS
55	Arginine decarboxylase: A novel biological target of mercury compounds identified in PC12 cells. Biochemical Pharmacology, 2016, 118, 109-120.	2.0	8
56	Crucial Role of P2X ₇ Receptor in Regulating Exocytosis of Single-Walled Carbon Nanotubes in Macrophages. Small, 2016, 12, 5998-6011.	5.2	20
57	Insight into the Mechanisms of Combined Toxicity of Single-Walled Carbon Nanotubes and Nickel Ions in Macrophages: Role of P2X ₇ Receptor. Environmental Science & E	4.6	26
58	In vitro assessment of thyroid hormone receptor activity of four organophosphate esters. Journal of Environmental Sciences, 2016, 45, 185-190.	3.2	32
59	Investigation of the Binding Interaction of Fatty Acids with Human G Protein-Coupled Receptor 40 Using a Site-Specific Fluorescence Probe by Flow Cytometry. Biochemistry, 2016, 55, 1989-1996.	1.2	14
60	Light-Induced Efficient Molecular Oxygen Activation on a Cu(II)-Grafted TiO ₂ /Graphene Photocatalyst for Phenol Degradation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1816-1823.	4.0	106
61	An electrochemiluminescence biosensor for 8-oxo-7,8-dihydro-2′-deoxyguanosine quantification and DNA repair enzyme activity analysis using a novel bifunctional probe. Biosensors and Bioelectronics, 2015, 69, 235-240.	5.3	16
62	Switching Oxygen Reduction Pathway by Exfoliating Graphitic Carbon Nitride for Enhanced Photocatalytic Phenol Degradation. Journal of Physical Chemistry Letters, 2015, 6, 958-963.	2.1	141
63	InÂvivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice: Identification of T-cell receptor and calcium-mediated signaling pathway disruption through gene expression profiling of the spleen. Chemico-Biological Interactions, 2015, 240, 84-93.	1.7	14
64	In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: Apoptosis and immune cell dysfunction. Chemosphere, 2015, 120, 621-630.	4.2	56
65	Structure–activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor. Archives of Toxicology, 2015, 89, 233-242.	1.9	80
66	Cellular target recognition of perfluoroalkyl acids: In vitro evaluation of inhibitory effects on lysine decarboxylase. Science of the Total Environment, 2014, 496, 381-388.	3.9	5
67	Online Detection of Reactive Oxygen Species in Ultraviolet (UV)-Irradiated Nano-TiO ₂ Suspensions by Continuous Flow Chemiluminescence. Analytical Chemistry, 2014, 86, 10535-10539.	3.2	74
68	In vitro inhibition of lysine decarboxylase activity by organophosphate esters. Biochemical Pharmacology, 2014, 92, 506-516.	2.0	17
69	Polyamine-functionalized carbon nanodots: a novel chemiluminescence probe for selective detection of iron(<scp>iii</scp>) ions. RSC Advances, 2014, 4, 45768-45771.	1.7	44
70	Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor \hat{I}^3 . Toxicology and Applied Pharmacology, 2014, 279, 275-283.	1.3	87
71	UV Irradiation Induced Transformation of TiO ₂ Nanoparticles in Water: Aggregation and Photoreactivity. Environmental Science & Eamp; Technology, 2014, 48, 11962-11968.	4.6	72
72	Photoelectrochemical Competitive Detection of Biotin. Chinese Journal of Analytical Chemistry, 2013, 41, 1477-1481.	0.9	2

#	Article	IF	CITATIONS
73	Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination. Toxicology and Applied Pharmacology, 2013, 268, 256-263.	1.3	86
74	Structure-dependent activities of hydroxylated polybrominated diphenyl ethers on human estrogen receptor. Toxicology, 2013, 309, 15-22.	2.0	42
75	Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicology Letters, 2013, 221, 118-127.	0.4	145
76	Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties. Nanoscale, 2013, 5, 2655.	2.8	154
77	Two-Dimensional Interface Engineering of a Titania–Graphene Nanosheet Composite for Improved Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13035-13041.	4.0	144
78	Structure-Based Investigation on the Interaction of Perfluorinated Compounds with Human Liver Fatty Acid Binding Protein. Environmental Science & Early Rechnology, 2013, 47, 11293-11301.	4.6	171
79	Assessment of Estrogenic Activity of Perfluoroalkyl Acids Based on Ligand-induced Conformation State of Human Estrogen Receptor. Environmental Science & Environmental Science & 2013, 47, 634-641.	4.6	48
80	Development of a label-free competitive ligand binding assay with human serum albumin on a molecularly engineered surface plasmon resonance sensor chip. Analytical Methods, 2012, 4, 3718.	1.3	10
81	Assessment of the Binding of Hydroxylated Polybrominated Diphenyl Ethers to Thyroid Hormone Transport Proteins Using a Site-Specific Fluorescence Probe. Environmental Science & amp; Technology, 2012, 46, 4633-4640.	4.6	94
82	<i>In vitro</i> toxicity of acid-functionalized single-walled carbon nanotubes: Effects on murine macrophages and gene expression profiling. Nanotoxicology, 2012, 6, 288-303.	1.6	33
83	Development of microplate-based photoelectrochemical DNA biosensor array for high throughput detection of DNA damage. Sensors and Actuators B: Chemical, 2012, 161, 334-340.	4.0	17
84	DNA biosensors based on metallo-intercalator probes and electrocatalytic amplification. Mikrochimica Acta, 2011, 172, 247-260.	2.5	39
85	Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology, 2010, 277, 20-28.	2.0	101
86	Lack of nano size effect on electrochemistry of dopamine at a gold nanoparticle modified indium tin oxide electrode. Science China Chemistry, 2010, 53, 1778-1783.	4.2	8
87	One-step and high-density protein immobilization on epoxysilane-modified silica nanoparticles. Science Bulletin, 2009, 54, 2620-2626.	4.3	30
88	Part-per-trillion level detection of estradiol by competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels. Analytica Chimica Acta, 2008, 624, 141-146.	2.6	20
89	Chemical-Induced Unfolding of Cofactor-Free Protein Monitored by Electrochemistry. Analytical Chemistry, 2006, 78, 6275-6278.	3.2	38
90	Multiple DNA Binding Modes of a Metallointercalator Revealed by DNA Film Voltammetry. Journal of Physical Chemistry B, 2006, 110, 20568-20571.	1.2	16

#	Article	IF	CITATION
91	Determination of Surface-Immobilized Double-Stranded DNA Using a Metallointercalator and Catalytic Voltammetry. Mikrochimica Acta, 2006, 155, 409-414.	2.5	18
92	A new chemically amplified electrochemical system for the detection of biological affinity reactions: direct and competitive biotin assay. Analyst, The, 2005, 130, 1027.	1.7	15