
Thomas M Chappell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7850765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Fly in the Ointment: How to Predict Environmentally Driven Phenology of an Organism That Partially Regulates Its Microclimate. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	1
2	A Practical Application of Unsupervised Machine Learning for Analyzing Plant Image Data Collected Using Unmanned Aircraft Systems. Agronomy, 2020, 10, 633.	3.0	9
3	Cotton thrips infestation predictor: a practical tool for predicting tobacco thrips (<scp><i>Frankliniella fusca</i></scp>) infestation of cotton seedlings in the southâ€eastern <scp>United States</scp> . Pest Management Science, 2020, 76, 4018-4028.	3.4	7
4	Adding Epidemiologically Important Meteorological Data to Peanut Rx, the Risk Assessment Framework for Spotted Wilt of Peanut. Phytopathology, 2020, 110, 1199-1207.	2.2	7
5	Ecoâ€efficiency as a strategy for optimizing the sustainability of pest management. Pest Management Science, 2019, 75, 3129-3134.	3.4	15
6	Perspective: serviceâ€based business models to incentivize the efficient use of pesticides in crop protection. Pest Management Science, 2019, 75, 2865-2872.	3.4	6
7	Social Ecological System Tools for Improving Crop Pest Management. Journal of Integrated Pest Management, 2019, 10, .	2.0	14
8	A thrips vector of tomato spotted wilt virus responds to tomato acylsugar chemical diversity with reduced oviposition and virus inoculation. Scientific Reports, 2019, 9, 17157.	3.3	17
9	Stability of neonicotinoid sensitivity in Frankliniella fusca populations found in agroecosystems of the southeastern USA. Pest Management Science, 2019, 75, 1539-1545.	3.4	3
10	Insecticide Resistance Signals Negative Consequences of Widespread Neonicotinoid Use on Multiple Field Crops in the U.S. Cotton Belt. Environmental Science & Technology, 2018, 52, 2314-2322.	10.0	26
11	Combination of Acylglucose QTL reveals additive and epistatic genetic interactions and impacts insect oviposition and virus infection. Molecular Breeding, 2018, 38, 1.	2.1	31
12	Acylsugar amount and fatty acid profile differentially suppress oviposition by western flower thrips, Frankliniella occidentalis, on tomato and interspecific hybrid flowers. PLoS ONE, 2018, 13, e0201583.	2.5	28
13	<i>Frankliniella fusca</i> resistance to neonicotinoid insecticides: an emerging challenge for cotton pest management in the eastern United States. Pest Management Science, 2016, 72, 1934-1945.	3.4	62
14	Evolution of host range in <i>Coleosporium ipomoeae</i> , a plant pathogen with multiple hosts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5346-5351.	7.1	24
15	Differential and Synergistic Functionality of Acylsugars in Suppressing Oviposition by Insect Herbivores. PLoS ONE, 2016, 11, e0153345.	2.5	75
16	Volatility of Mutator Phenotypes at Single Cell Resolution. PLoS Genetics, 2015, 11, e1005151.	3.5	15
17	Interacting Virus Abundance and Transmission Intensity Underlie Tomato Spotted Wilt Virus Incidence: An Example Weather-Based Model for Cultivated Tobacco. PLoS ONE, 2013, 8, e73321.	2.5	26