
S Emilia Hannula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7850161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8, 14349.	5.8	555
2	Fungal Biodiversity and Their Role in Soil Health. Frontiers in Microbiology, 2018, 9, 707.	1.5	350
3	Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 2016, 97, 112-124.	2.1	184
4	Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME Journal, 2017, 11, 2294-2304.	4.4	177
5	Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biology and Biochemistry, 2015, 88, 403-413.	4.2	151
6	Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications, 2019, 10, 1254.	5.8	135
7	¹³ C pulseâ€labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starchâ€modified potato (<i>Solanum tuberosum</i>) cultivar and its parental isoline. New Phytologist, 2012, 194, 784-799.	3.5	123
8	Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 2021, 12, 5686.	5.8	96
9	Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content. Soil Biology and Biochemistry, 2017, 108, 41-54.	4.2	88
10	A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry, 2019, 136, 107536.	4.2	88
11	Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 2016, 69, 213-223.	2.6	80
12	Plant community composition steers grassland vegetation via soil legacy effects. Ecology Letters, 2020, 23, 973-982.	3.0	76
13	In situ dynamics of soil fungal communities under different genotypes of potato, including a genetically modified cultivar. Soil Biology and Biochemistry, 2010, 42, 2211-2223.	4.2	71
14	The hidden potential of saprotrophic fungi in arable soil: Patterns of short-term stimulation by organic amendments. Applied Soil Ecology, 2020, 147, 103434.	2.1	70
15	Conditioning the soil microbiome through plant–soil feedbacks suppresses an aboveground insect pest. New Phytologist, 2020, 226, 595-608.	3.5	67
16	A 3-Year Study Reveals That Plant Growth Stage, Season and Field Site Affect Soil Fungal Communities while Cultivar and GM-Trait Have Minor Effects. PLoS ONE, 2012, 7, e33819.	1.1	64
17	Time after Time: Temporal Variation in the Effects of Grass and Forb Species on Soil Bacterial and Fungal Communities. MBio, 2019, 10, .	1.8	60
18	Different Selective Effects on Rhizosphere Bacteria Exerted by Genetically Modified versus Conventional Potato Lines. PLoS ONE, 2013, 8, e67948.	1.1	49

S Emilia Hannula

#	Article	IF	CITATIONS
19	Removal of soil biota alters soil feedback effects on plant growth and defense chemistry. New Phytologist, 2019, 221, 1478-1491.	3.5	45
20	Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soilâ€borne pathogen. Environmental Microbiology, 2020, 22, 660-676.	1.8	36
21	Do genetic modifications in crops affect soil fungi? a review. Biology and Fertility of Soils, 2014, 50, 433-446.	2.3	35
22	Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biology and Biochemistry, 2021, 160, 108343.	4.2	29
23	Will fungi solve the carbon dilemma?. Geoderma, 2022, 413, 115767.	2.3	28
24	Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology, 2020, 150, 103468.	2.1	26
25	Inconsistent effects of agricultural practices on soil fungal communities across 12 <scp>European</scp> longâ€ŧerm experiments. European Journal of Soil Science, 2021, 72, 1902-1923.	1.8	26
26	Ecosystem coupling: A unifying framework to understand the functioning and recovery of ecosystems. One Earth, 2021, 4, 951-966.	3.6	26
27	Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecology, 2020, 48, 100988.	0.7	21
28	Taking plant–soil feedbacks to the field in a temperate grassland. Basic and Applied Ecology, 2019, 40, 30-42.	1.2	17
29	Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Animal Microbiome, 2020, 2, 37.	1.5	17
30	â€~Home' and â€~away' litter decomposition depends on the size fractions of the soil biotic community. S Biology and Biochemistry, 2020, 144, 107783.	oil 4.2	17
31	Removal by Sorption andIn SituBiodegradation of Oil Spills Limits Damage to Marine Biota: A Laboratory Simulation. Ambio, 2007, 36, 173-179.	2.8	16
32	Evaluation of Phenolic Root Exudates as Stimulants of Saptrophic Fungi in the Rhizosphere. Frontiers in Microbiology, 2021, 12, 644046.	1.5	16
33	Steering the soil microbiome by repeated litter addition. Journal of Ecology, 2021, 109, 2499-2513.	1.9	14
34	Soil fungal guilds as important drivers of the plant richness–productivity relationship. New Phytologist, 2020, 226, 947-949.	3.5	12
35	How plant–soil feedbacks influence the next generation of plants. Ecological Research, 2021, 36, 32-44.	0.7	12
36	Effect of genetic modification of potato starch on decomposition of leaves and tubers and on fungal decomposer communities. Soil Biology and Biochemistry, 2013, 58, 88-98.	4.2	11

S Emilia Hannula

#	Article	IF	CITATIONS
37	Stimulated saprotrophic fungi in arable soil extend their activity to the rhizosphere and root microbiomes of crop seedlings. Environmental Microbiology, 2021, 23, 6056-6073.	1.8	11
38	Optimizing stand density for climate-smart forestry: A way forward towards resilient forests with enhanced carbon storage under extreme climate events. Soil Biology and Biochemistry, 2021, 162, 108396.	4.2	11
39	Local stability properties of complex, speciesâ€rich soil food webs with functional block structure. Ecology and Evolution, 2021, 11, 16070-16081.	0.8	11
40	Impact of Cellulose-Rich Organic Soil Amendments on Growth Dynamics and Pathogenicity of Rhizoctonia solani. Microorganisms, 2021, 9, 1285.	1.6	10
41	Matgrass sward plant species benefit from soil organisms. Applied Soil Ecology, 2012, 62, 61-70.	2.1	9
42	Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils. Frontiers in Microbiology, 2016, 7, 1897.	1.5	9
43	Interkingdom plant-microbial ecological networks under selective and clear cutting of tropical rainforest. Forest Ecology and Management, 2021, 491, 119182.	1.4	9
44	Aboveâ€belowground linkages of functionally dissimilar plant communities and soil properties in a grassland experiment. Ecosphere, 2020, 11, e03246.	1.0	7
45	Plant community legacy effects on nutrient cycling, fungal decomposer communities and decomposition in a temperate grassland. Soil Biology and Biochemistry, 2021, 163, 108450.	4.2	7
46	Temporal changes in plant–soil feedback effects on microbial networks, leaf metabolomics and plant–insect interactions. Journal of Ecology, 2022, 110, 1328-1343.	1.9	5
47	Soil inoculation alters the endosphere microbiome of chrysanthemum roots and leaves. Plant and Soil, 2020, 455, 107-119.	1.8	4
48	Plant-litter-soil feedbacks in common grass species are slightly negative and only marginally modified by litter exposed to insect herbivory. Plant and Soil, 2023, 485, 227-244.	1.8	3