List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7850107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved biological performance of ketoprofen using novel modified halloysite clay nanotubes. Applied Clay Science, 2022, 216, 106341.	2.6	9
2	Synthesis, in silico study (DFT, ADMET) and crystal structure of novel sulfamoyloxy-oxazolidinones: Interaction with SARS-CoV-2. Journal of Molecular Structure, 2022, 1257, 132579.	1.8	5
3	4,5,7â€Trisubstituted indeno[1,2â€ <i>b</i>]indole inhibits CK2 activity in tumor cells equivalent to CXâ€4945 and shows strong antiâ€migratory effects. FEBS Open Bio, 2022, 12, 394-411.	1.0	2
4	Tetanus Toxin Fragment C: Structure, Drug Discovery Research and Production. Pharmaceuticals, 2022, 15, 756.	1.7	6
5	Ninhydrins inhibit carbonic anhydrases directly binding to the metal ion. European Journal of Medicinal Chemistry, 2021, 209, 112875.	2.6	18
6	Uncompetitive nanomolar dimeric indenoindole inhibitors of the human breast cancer resistance pump ABCG2. European Journal of Medicinal Chemistry, 2021, 211, 113017.	2.6	12
7	Adsorption studies of benzophenone-3 onto clay minerals and organosilicates: Kinetics and modelling. Applied Clay Science, 2021, 202, 105937.	2.6	19
8	Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Scientific Reports, 2021, 11, 1788.	1.6	17
9	Broad-Spectrum Anticancer Activity and Pharmacokinetic Properties of a Prenyloxy-Substituted Indeno[1,2-b]indole Derivative, Discovered as CK2 Inhibitor. Pharmaceuticals, 2021, 14, 542.	1.7	4
10	Brain safety concerns of nanomedicines: The need for a specific regulatory framework. Drug Discovery Today, 2021, 26, 2502-2507.	3.2	2
11	Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: <i>in silico</i> modelling, formulation, characterisation, and <i>inÂvitro</i> studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 605-617.	2.5	22
12	Microwave-accelerated multicomponent synthesis and X-ray characterization of novel benzothiadiazinone dioxide derivatives, analogues of Monastrol. Research on Chemical Intermediates, 2021, 47, 1359-1376.	1.3	12
13	Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 398-403.	2.5	35
14	QSAR Model of Indeno[1,2-b]indole Derivatives and Identification of N-isopentyl-2-methyl-4,9-dioxo-4,9-Dihydronaphtho[2,3-b]furan-3-carboxamide as a Potent CK2 Inhibitor. Molecules, 2020, 25, 97.	1.7	10
15	Synthesis, Optimization, Antifungal Activity, Selectivity, and CYP51 Binding of New 2-Aryl-3-azolyl-1-indolyl-propan-2-ols. Pharmaceuticals, 2020, 13, 186.	1.7	12
16	Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals, 2020, 10, 1151.	1.0	51
17	Fragment Linking Strategies for Structure-Based Drug Design. Journal of Medicinal Chemistry, 2020, 63, 11420-11435.	2.9	53
18	Synthesis of new piperazinyl-pyrrolo[1,2- <i>a</i>]quinoxaline derivatives as inhibitors of <i>Candida albicans</i> multidrug transporters by a Buchwald–Hartwig cross-coupling reaction. RSC Advances, 2020, 10, 2915-2931.	1.7	7

#	Article	IF	CITATIONS
19	Improved Surface Display of Human Hyal1 and Identification of Testosterone Propionate and Chicoric Acid as New Inhibitors. Pharmaceuticals, 2020, 13, 54.	1.7	7
20	1D NMR WaterLOGSY as an efficient method for fragment-based lead discovery. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1218-1225.	2.5	31
21	Carbazole scaffolds in cancer therapy: a review from 2012 to 2018. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1321-1346.	2.5	96
22	Discovery of holoenzyme-disrupting chemicals as substrate-selective CK2 inhibitors. Scientific Reports, 2019, 9, 15893.	1.6	18
23	Comparison of SEC and AF4 analytical tools for size estimation of typhoid Vi polysaccharides. Analytical Methods, 2019, 11, 4851-4858.	1.3	6
24	2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. Journal of Medicinal Chemistry, 2019, 62, 1817-1836.	2.9	17
25	2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 1. Identification of an Allosteric Binding Site. Journal of Medicinal Chemistry, 2019, 62, 1803-1816.	2.9	25
26	Behaviour of Tetrabenazine in Acid Medium: Reassessment and Impact on Formulation. Pharmaceutics, 2019, 11, 44.	2.0	1
27	Synthesis and biological evaluation of zinc chelating compounds as metallo-β-lactamase inhibitors. MedChemComm, 2019, 10, 528-537.	3.5	13
28	Diacritic Binding of an Indenoindole Inhibitor by CK2α Paralogs Explored by a Reliable Path to Atomic Resolution CK2I±â€² Structures. ACS Omega, 2019, 4, 5471-5478.	1.6	18
29	<i>In vitro</i> modulation of multidrug resistance by pregnane steroids and <i>in vivo</i> inhibition of tumour development by 71±-OBz-111±(R)-OTHP-51²-pregnanedione in K562/R7 and H295R cell xenografts. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 684-691.	2.5	4
30	A comparative adsorption study of benzophenone-3 onto synthesized lipophilic organosilicate, Laponite and montmorillonite. Applied Clay Science, 2019, 170, 114-124.	2.6	16
31	Synthesis and biological evaluation of new dipicolylamine zinc chelators as metallo-β-lactamase inhibitors. Tetrahedron, 2019, 75, 1525-1540.	1.0	10
32	Enhancement of iodinin solubility by encapsulation into cyclodextrin nanoparticles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 370-375.	2.5	7
33	Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 639-650.	2.5	8
34	Structure-based design and profiling of novel 17β-HSD14 inhibitors. European Journal of Medicinal Chemistry, 2018, 155, 61-76.	2.6	9
35	Synthesis, X-ray structure, in silico calculation, and carbonic anhydrase inhibitory properties of benzylimidazole metal complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1150-1159.	2.5	6
36	Self-Assembled Supramolecular Nanoparticles Improve the Cytotoxic Efficacy of CK2 Inhibitor THN7. Pharmaceuticals, 2018, 11, 10.	1.7	5

#	Article	IF	CITATIONS
37	Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors. ACS Infectious Diseases, 2018, 4, 1407-1422.	1.8	35
38	Synthesis, Spectroscopic Characterization, and In Vitro Antibacterial Evaluation of Novel Functionalized Sulfamidocarbonyloxyphosphonates. Molecules, 2018, 23, 1682.	1.7	14
39	Sequential MCR/Fisher indolization strategy for the construction of polycyclic carbazole derivatives. Tetrahedron Letters, 2017, 58, 1305-1307.	0.7	6
40	DMAP as a new efficient catalyst for the one-pot synthesis of condensed phthalazines. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 361-368.	0.3	8
41	The combined use of analytical tools for exploring tetanus toxin and tetanus toxoid structures. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1054, 80-92.	1.2	12
42	Sleep Disorders and Therapeutic Management: A Survey in a French Population of Prisoners. Journal of Correctional Health Care, 2017, 23, 193-202.	0.2	10
43	Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α′. Pharmaceuticals, 2017, 10, 98.	1.7	13
44	In Search of Small Molecule Inhibitors Targeting the Flexible CK2 Subunit Interface. Pharmaceuticals, 2017, 10, 16.	1.7	14
45	An Updated View on an Emerging Target: Selected Papers from the 8th International Conference on Protein Kinase CK2. Pharmaceuticals, 2017, 10, 33.	1.7	1
46	Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining. Pharmaceuticals, 2017, 10, 8.	1.7	26
47	Candidate Molecule Selection Based on In Silico Predicted ADMET Properties of 12 Indenoindole Derivatives. Chemical Informatics (Wilmington, Del), 2016, 02, .	0.4	2
48	1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015). Pharmaceuticals, 2016, 9, 1.	1.7	31
49	Screening of indeno[1,2- <i>b</i>]indoloquinones by MALDI-MS: a new set of potential CDC25 phosphatase inhibitors brought to light. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 25-32.	2.5	9
50	2-Indolylmethylenebenzofuranones as first effective inhibitors of ABCC2. European Journal of Medicinal Chemistry, 2016, 122, 408-418.	2.6	22
51	Toward selective CK2alpha and CK2alpha' inhibitors: Development of a novel whole-cell kinase assay by Autodisplay of catalytic CK2alpha'. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121, 253-260.	1.4	15
52	Conformational and dynamic considerations in drug design for G-protein coupled receptors. , 2016, 06, .		0
53	Functional display of heterotetrameric human protein kinase CK2 on Escherichia coli: a novel tool for drug discovery. Microbial Cell Factories, 2015, 14, 74.	1.9	22
54	Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity. Drug Design, Development and Therapy, 2015, 9, 3481.	2.0	18

#	Article	IF	CITATIONS
55	Synthesis of New Steroidal Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance and Biological Evaluation on K562/R7 Erythroleukemia Cells. Journal of Medicinal Chemistry, 2015, 58, 1832-1845.	2.9	12
56	Microwave-assisted oxidation of indan-1-ones into ninhydrins. Tetrahedron Letters, 2015, 56, 1840-1842.	0.7	15
57	Synthesis, Biological Evaluation and Molecular Modeling of Substituted Indeno[1,2-b]indoles as Inhibitors of Human Protein Kinase CK2. Pharmaceuticals, 2015, 8, 279-302.	1.7	29
58	Biomimetic synthesis of Tramadol. Chemical Communications, 2015, 51, 14451-14453.	2.2	12
59	A one-pot three-component synthesis of novel α-sulfamidophosphonates under ultrasound irradiation and catalyst-free conditions. RSC Advances, 2015, 5, 39324-39329.	1.7	36
60	Biologically active carbazole derivatives: focus on oxazinocarbazoles and related compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 180-188.	2.5	17
61	Converting Potent Indeno[1,2- <i>b</i>]indole Inhibitors of Protein Kinase CK2 into Selective Inhibitors of the Breast Cancer Resistance Protein ABCG2. Journal of Medicinal Chemistry, 2015, 58, 265-277.	2.9	61
62	Mechanisms of depolymerization and activation of a polysialic acid and its tetramer by hydrogen peroxide. Carbohydrate Polymers, 2015, 115, 494-501.	5.1	8
63	Crystal structure of 13-phenyl-2,3,4,13-tetrahydro-1H-indazolo[1,2-b]phthalazine-1,6,11-trione. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o1036-o1037.	0.2	0
64	Discovery of 7â€Arylâ€Substituted (1,5â€Naphthyridinâ€4â€yl)ureas as Aurora Kinase Inhibitors. ChemMedChem 2014, 9, 217-232.	' 1.6	9
65	Oxidation of sialic acid using hydrogen peroxide as a new method to tune the reducing activity. Carbohydrate Research, 2014, 386, 92-98.	1.1	15
66	Discovery of (7-aryl-1,5-naphthyridin-2-yl)ureas as dual inhibitors of ERK2 and Aurora B kinases with antiproliferative activity against cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3748-3752.	1.0	6
67	Structural elucidation of two photolytic degradation products of tetrabenazine. Journal of Pharmaceutical and Biomedical Analysis, 2014, 91, 138-143.	1.4	7
68	Occurrence of the Synthetic Analgesic Tramadol in an African Medicinal Plant. Angewandte Chemie - International Edition, 2013, 52, 11780-11784.	7.2	34
69	¹ H and ¹³ C NMR assignments of bioactive indeno[1,2â€ <i>b</i>]indoleâ€10â€one derivatives. Magnetic Resonance in Chemistry, 2013, 51, 837-841.	1.1	3
70	Indenoindoles and cyclopentacarbazoles as bioactive compounds: Synthesis and biological applications. European Journal of Medicinal Chemistry, 2013, 69, 465-479.	2.6	43
71	Preparation and characterization of CK2 inhibitor-loaded cyclodextrin nanoparticles for drug delivery. International Journal of Pharmaceutics, 2013, 441, 491-498.	2.6	21
72	Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2. European Journal of Medicinal Chemistry, 2013, 65, 205-222.	2.6	83

#	Article	IF	CITATIONS
73	A safe and practical method for the preparation of 7α-thioether and thioester derivatives of spironolactone. Steroids, 2013, 78, 102-107.	0.8	4
74	Novel indeno[1,2-b]indoloquinones as inhibitors of the human protein kinase CK2 with antiproliferative activity towards a broad panel of cancer cell lines. Biochemical and Biophysical Research Communications, 2012, 424, 71-75.	1.0	28
75	Indeno[1,2-b]indole derivatives as a novel class of potent human protein kinase CK2 inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 2282-2289.	1.4	74
76	Design, Synthesis, and in vitro Antifungal Activity of 1â€{(4â€Substitutedâ€benzyl)methylamino]â€2â€(2,4â€difluorophenyl)â€3â€(1 <i>H</i> â€1,2,4â€triazolâ€1â€ ChemMedChem, 2011, 6, 816-825.	yl)psopan	â€ 2⁄ â€ols.
77	81: Targeting casein kinase 2 in drug discovery: identification of new chemical entities. Bulletin Du Cancer, 2010, 97, S68.	0.6	0
78	Synthesis and structure–activity relationships of 2-phenyl-1-[(pyridinyl- and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf Medicinal Chemistry Letters, 2009, 19, 301-304.	50 547 To 1.0	l (piperidinylı 42
79	Design of new antifungal agents: synthesis and evaluation of 1-[(1H-indol-5-ylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5833-5836.	1.0	22
80	Design, synthesis and evaluation of 3-(imidazol- 1-ylmethyl)indoles as antileishmanial agents. Part II. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1067-1075.	2.5	14
81	Design, synthesis, and evaluation of 1-(N-benzylamino)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1820-1824.	1.0	32
82	Synthesis of 6- or 4-functionalized indoles via a reductive cyclization approach and evaluation as aromatase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4713-4715.	1.0	37
83	P1678 New antiprotozoal drugs refered as antimicrotubular haloacetamidobenzoates. International Journal of Antimicrobial Agents, 2007, 29, S475.	1.1	0
84	Synthesis and biological evaluation of 3-(azolylmethyl)-1H-indoles and 3-(α-azolylbenzyl)-1H-indoles as selective aromatase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 667-676.	2.5	8
85	Synthesis and antifungal activities of new fluconazole analogues with azaheterocycle moiety. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3686-3689.	1.0	60
86	A 3D-QSAR CoMSIA study on 3-azolylmethylindoles as anti-leishmanial agents. SAR and QSAR in Environmental Research, 2006, 17, 299-309.	1.0	3
87	Synthesis and biological evaluation of 5-[(aryl)(1H-imidazol-1-yl)methyl]-1H-indoles: Potent and selective aromatase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1134-1137.	1.0	68
88	Efficient microwave-assisted synthesis of 1-(1H-indol-1-yl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents. Tetrahedron Letters, 2006, 47, 6479-6483.	0.7	40
89	Antileishmanial activities and mechanisms of action of indole-based azoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 277-283.	2.5	17
90	Three-dimensional model of cytochrome P450 human aromatase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 581-585.	2.5	16

#	Article	IF	CITATIONS
91	Synthesis and Antileishmanial Activity of 3-Imidazolylalkylindoles. Part I. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 451-457.	2.5	7
92	2- and 3-[(Aryl)(azolyl)methyl]indoles as Potential Non-steroidal Aromatase Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 549-557.	2.5	60
93	Synthesis and Antifungal Activity of New 1-Halogenobenzyl-3-imidazolylmethylindole Derivatives ChemInform, 2003, 34, no.	0.1	0
94	Preparation and Pharmacological Profile of 7-(α-Azolylbenzyl)-1H-indoles and Indolines as New Aromatase Inhibitors ChemInform, 2003, 34, no.	0.1	0
95	Preparation and pharmacological profile of 7-(α-Azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1553-1555.	1.0	36
96	Synthesis and antifungal activity of new 1-halogenobenzyl-3-imidazolylmethylindole derivatives. European Journal of Medicinal Chemistry, 2003, 38, 75-87.	2.6	36
97	Retinoic Acid Metabolism Inhibition by 3-Azolylmethyl-1H-indoles and 2, 3 or 5-(α-Azolylbenzyl)-1H-indoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2003, 18, 155-158.	2.5	5
98	In Vitro Activity of a New Antifungal Azolyl-substituted Indole Against Aspergillus fumigatus. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 425-429.	2.5	4
99	Synthesis and Antileishmanial Activity of 3-(α-Azolylbenzyl)indoles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 353-358.	2.5	6
100	Potential application of plant lipid transfer proteins for drug delivery. Biochemical Pharmacology, 2001, 62, 555-560.	2.0	50
101	New selective nonsteroidal aromatase inhibitors: Synthesis and inhibitory activity of 2,3 or 5-(α-azolylbenzyl)-1H-indoles. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 333-336.	1.0	67
102	Synthesis andIn Vitro Evaluation of 3-(1-Azolylmethyl)-1H-indoles and 3-(1-Azolyl-1-phenylmethyl)-1H-indoles as Inhibitors of P450 arom. Archiv Der Pharmazie, 1997, 330, 141-145.	2.1	54
103	Advances in peptidomimetics as inhibitors of ABC transporters. , 0, , .		0