List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849899/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline<br>BiVO4Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical<br>Properties. Journal of the American Chemical Society, 1999, 121, 11459-11467.  | 6.6 | 1,813     |
| 2  | Highly Efficient Water Splitting into H2and O2over Lanthanum-Doped NaTaO3Photocatalysts with<br>High Crystallinity and Surface Nanostructure. Journal of the American Chemical Society, 2003, 125,<br>3082-3089.                                                               | 6.6 | 1,585     |
| 3  | Selective Preparation of Monoclinic and Tetragonal BiVO4with Scheelite Structure and Their Photocatalytic Properties. Chemistry of Materials, 2001, 13, 4624-4628.                                                                                                             | 3.2 | 979       |
| 4  | Hydrolysis of Cellulose by Amorphous Carbon Bearing SO <sub>3</sub> H, COOH, and OH Groups.<br>Journal of the American Chemical Society, 2008, 130, 12787-12793.                                                                                                               | 6.6 | 941       |
| 5  | Photocatalytic Activities of Noble Metal Ion Doped SrTiO3under Visible Light Irradiation. Journal of<br>Physical Chemistry B, 2004, 108, 8992-8995.                                                                                                                            | 1.2 | 832       |
| 6  | Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. Journal of Physical Chemistry B, 2002, 106, 5029-5034.                                                                                              | 1.2 | 796       |
| 7  | Photocatalytic H2Evolution Reaction from Aqueous Solutions over Band Structure-Controlled<br>(AgIn)xZn2(1-x)S2Solid Solution Photocatalysts with Visible-Light Response and Their Surface<br>Nanostructures. Journal of the American Chemical Society, 2004, 126, 13406-13413. | 6.6 | 785       |
| 8  | Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution.<br>Catalysis Letters, 1998, 53, 229-230.                                                                                                                                       | 1.4 | 657       |
| 9  | Water Splitting into H2and O2on Alkali Tantalate Photocatalysts ATaO3(A = Li, Na, and K). Journal of<br>Physical Chemistry B, 2001, 105, 4285-4292.                                                                                                                            | 1.2 | 629       |
| 10 | Water Splitting into H2and O2on New Sr2M2O7(M = Nb and Ta) Photocatalysts with Layered Perovskite<br>Structures:Â Factors Affecting the Photocatalytic Activity. Journal of Physical Chemistry B, 2000, 104,<br>571-575.                                                       | 1.2 | 602       |
| 11 | Role of Ag+in the Band Structures and Photocatalytic Properties of AgMO3(M:Â Ta and Nb) with the<br>Perovskite Structure. Journal of Physical Chemistry B, 2002, 106, 12441-12447.                                                                                             | 1.2 | 463       |
| 12 | Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a<br>ZnS-CuInS2-AgInS2 Solid-Solution Photocatalyst. Angewandte Chemie - International Edition, 2005, 44,<br>3565-3568.                                                        | 7.2 | 434       |
| 13 | Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2and O2under Visible Light Irradiation. Chemistry Letters, 2004, 33, 1348-1349.                                                                                                   | 0.7 | 401       |
| 14 | Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry<br>Letters, 2004, 33, 1534-1539.                                                                                                                                          | 0.7 | 397       |
| 15 | Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light<br>Irradiation. Journal of Physical Chemistry B, 2006, 110, 17790-17797.                                                                                                      | 1.2 | 390       |
| 16 | The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. Journal of Catalysis, 2008, 259, 133-137.                                                                        | 3.1 | 382       |
| 17 | New tantalate photocatalysts for water decomposition into H2 and O2. Chemical Physics Letters, 1998, 295, 487-492.                                                                                                                                                             | 1.2 | 371       |
| 18 | [Co(bpy) <sub>3</sub> ] <sup>3+/2+</sup> and [Co(phen) <sub>3</sub> ] <sup>3+/2+</sup> Electron<br>Mediators for Overall Water Splitting under Sunlight Irradiation Using Z-Scheme Photocatalyst<br>System, Journal of the American Chemical Society, 2013, 135, 5441-5449.    | 6.6 | 327       |

Ηισεκι Κάτο

| #  | Article                                                                                                                                                                                                                                     | IF         | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|
| 19 | H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium<br>and tantalum ions under visible light irradiation. Journal of Photochemistry and Photobiology A:<br>Chemistry, 2004, 163, 181-186.         | 2.0        | 323                 |
| 20 | AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chemical Communications, 2002, , 1958-1959.                                                                                 | 2.2        | 312                 |
| 21 | Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Physical Chemistry Chemical Physics, 2003, 5, 3061.                                                                             | 1.3        | 305                 |
| 22 | Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chemical Physics Letters, 2000, 331, 373-377.                                                                                                         | 1.2        | 294                 |
| 23 | Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catalysis Today, 2003, 78, 561-569.                                                                                                                    | 2.2        | 291                 |
| 24 | Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Physical Chemistry Chemical Physics, 2005, 7, 2241.                                 | 1.3        | 280                 |
| 25 | Adsorption-Enhanced Hydrolysis of β-1,4-Glucan on Graphene-Based Amorphous Carbon Bearing<br>SO <sub>3</sub> H, COOH, and OH Groups. Langmuir, 2009, 25, 5068-5075.                                                                         | 1.6        | 274                 |
| 26 | Photocatalytic Hydrogen Evolution on ZnSâ^'CuInS2â^'AgInS2 Solid Solution Photocatalysts with Wide<br>Visible Light Absorption Bands. Chemistry of Materials, 2006, 18, 1969-1975.                                                          | 3.2        | 271                 |
| 27 | Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy and Environmental Science, 2009, 2, 306.                                                                 | 15.6       | 248                 |
| 28 | Photocatalytic H2Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)xZn2(1-x)S2Solid Solutions. Journal of Physical Chemistry B, 2005, 109, 7323-7329.                                                          | 1.2        | 245                 |
| 29 | Role of Sn <sup>2+</sup> in the Band Structure of SnM <sub>2</sub> O <sub>6</sub> and<br>Sn <sub>2</sub> M <sub>2</sub> O <sub>7</sub> (M = Nb and Ta) and Their Photocatalytic Properties.<br>Chemistry of Materials, 2008, 20, 1299-1307. | 3.2        | 231                 |
| 30 | Novel Stannite-type Complex Sulfide Photocatalysts<br>A <sup>I</sup> <sub>2</sub> -Zn-A <sup>IV</sup> -S <sub>4</sub> (A <sup>I</sup> = Cu and Ag;) Tj ETQq0 0 0 r<br>Materials 2010 22 1402-1409                                           | gBŢ /Overl | ock 10 Tf 50<br>216 |
| 31 | Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. Journal of Materials Chemistry A, 2013, 1, 12327.                                              | 5.2        | 214                 |
| 32 | Tailoring of Deepâ€Red Luminescence in Ca <sub>2</sub> SiO <sub>4</sub> :Eu <sup>2+</sup> . Angewandte<br>Chemie - International Edition, 2014, 53, 7756-7759.                                                                              | 7.2        | 202                 |
| 33 | Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chemical Physics, 2007, 339, 104-110.                                                                                             | 0.9        | 191                 |
| 34 | Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catalysis<br>Letters, 1999, 58, 153-155.                                                                                                            | 1.4        | 183                 |
| 35 | Hydrolysis of Cellulose by a Solid Acid Catalyst under Optimal Reaction Conditions. Journal of Physical Chemistry C, 2009, 113, 3181-3188.                                                                                                  | 1.5        | 156                 |
| 36 | Photodynamics of NaTaO3Catalysts for Efficient Water Splitting. Journal of Physical Chemistry B, 2003, 107, 14383-14387.                                                                                                                    | 1.2        | 147                 |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Polymerizable Complex Synthesis of Pure Sr2NbxTa2-xO7Solid Solutions with High Photocatalytic Activities for Water Decomposition into H2and O2. Chemistry of Materials, 2002, 14, 3369-3376.            | 3.2  | 145       |
| 38 | Nanosized Au Particles as an Efficient Cocatalyst for Photocatalytic Overall Water Splitting.<br>Catalysis Letters, 2006, 108, 7-10.                                                                    | 1.4  | 136       |
| 39 | Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sciences, 2010, 12, 1029-1034.                                                                                   | 1.5  | 133       |
| 40 | Role of Iron Ion Electron Mediator on Photocatalytic Overall Water Splitting under Visible Light<br>Irradiation Using Z-Scheme Systems. Bulletin of the Chemical Society of Japan, 2007, 80, 2457-2464. | 2.0  | 130       |
| 41 | Photocatalytic O <sub>2</sub> Evolution of Rhodium and Antimony-Codoped Rutile-Type<br>TiO <sub>2</sub> under Visible Light Irradiation. Journal of Physical Chemistry C, 2007, 111, 17420-17426.       | 1.5  | 128       |
| 42 | The relationship between photocatalytic activity and crystal structure in strontium tantalates.<br>Journal of Catalysis, 2005, 232, 102-107.                                                            | 3.1  | 118       |
| 43 | SnO-SnO2 modified two-dimensional MXene Ti3C2T for acetone gas sensor working at room temperature. Journal of Materials Science and Technology, 2021, 73, 128-138.                                      | 5.6  | 117       |
| 44 | Structure and Catalysis of Celluloseâ€Đerived Amorphous Carbon Bearing SO <sub>3</sub> H Groups.<br>ChemSusChem, 2011, 4, 778-784.                                                                      | 3.6  | 111       |
| 45 | Energy Structure and Photocatalytic Activity of Niobates and Tantalates Containing Sn(II) with a 5s2Electron Configuration. Chemistry Letters, 2004, 33, 28-29.                                         | 0.7  | 109       |
| 46 | Photoinduced Dynamics of TiO <sub>2</sub> Doped with Cr and Sb. Journal of Physical Chemistry C, 2008, 112, 1167-1173.                                                                                  | 1.5  | 109       |
| 47 | The Effect of Alkaline Earth Metal Ion Dopants on Photocatalytic Water Splitting by<br>NaTaO <sub>3</sub> Powder. ChemSusChem, 2009, 2, 873-877.                                                        | 3.6  | 96        |
| 48 | Photocatalytic Activities of Layered Titanates and Niobates Ion-Exchanged with Sn <sup>2+</sup><br>under Visible Light Irradiation. Journal of Physical Chemistry C, 2008, 112, 17678-17682.            | 1.5  | 94        |
| 49 | Photocatalytic Decomposition of Pure Water into H2and O2over SrTa2O6Prepared by a Flux Method.<br>Chemistry Letters, 1999, 28, 1207-1208.                                                               | 0.7  | 92        |
| 50 | Photocatalytic Decomposition of Water into H2and O2over Novel Photocatalyst K3Ta3Si2O13with<br>Pillared Structure Consisting of Three TaO6Chains. Chemistry Letters, 1997, 26, 867-868.                 | 0.7  | 91        |
| 51 | Water Splitting into H2and O2over Ba5Nb4O15Photocatalysts with Layered Perovskite Structure<br>Prepared by Polymerizable Complex Method. Chemistry Letters, 2006, 35, 1052-1053.                        | 0.7  | 90        |
| 52 | The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction. Applied Catalysis B: Environmental, 2013, 136-137, 89-93.                                | 10.8 | 88        |
| 53 | Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catalysis Science and Technology, 2013, 3, 1733.            | 2.1  | 86        |
| 54 | Anomalous Orange Light-Emitting (Sr,Ba) <sub>2</sub> SiO <sub>4</sub> :Eu <sup>2+</sup> Phosphors<br>for Warm White LEDs. ACS Applied Materials & Interfaces, 2016, 8, 11615-11620.                     | 4.0  | 83        |

| #  | Article                                                                                                                                                                                                                                  | IF              | CITATIONS        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| 55 | Visible light response of AgLi <sub>1</sub> <sub>/3</sub> M <sub>2/3</sub> O <sub>2</sub> (M = Ti and) Tj ETQq1 of Materials Chemistry, 2008, 18, 647-653.                                                                               | 1 0.7843<br>6.7 | 814 rgBT /<br>82 |
| 56 | Structure and Acid Catalysis of Mesoporous Nb <sub>2</sub> O <sub>5</sub> · <i>n</i> H <sub>2</sub> O.<br>Chemistry of Materials, 2010, 22, 3332-3339.                                                                                   | 3.2             | 82               |
| 57 | Formation of Surface Nano-step Structures and Improvement of Photocatalytic Activities of NaTaO3by<br>Doping of Alkaline Earth Metal Ions. Chemistry Letters, 2004, 33, 1260-1261.                                                       | 0.7             | 81               |
| 58 | SO3H-bearing mesoporous carbon with highly selective catalysis. Microporous and Mesoporous Materials, 2011, 143, 443-450.                                                                                                                | 2.2             | 79               |
| 59 | Energy structure and photocatalytic activity for water splitting of Sr2(Ta1â^'XNbX)2O7 solid solution.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 129-133.                                                   | 2.0             | 77               |
| 60 | A Novel Photodeposition Method in the Presence of Nitrate lons for Loading of an Iridium Oxide Cocatalyst for Water Splitting. Chemistry Letters, 2005, 34, 946-947.                                                                     | 0.7             | 76               |
| 61 | Photocatalytic reduction of nitrate ions over tantalate photocatalysts. Physical Chemistry Chemical Physics, 2002, 4, 2833-2838.                                                                                                         | 1.3             | 72               |
| 62 | H2Evolution from Aqueous Potassium Sulfite Solutions under Visible Light Irradiation over a Novel Sulfide Photocatalyst NaInS2with a Layered Structure. Chemistry Letters, 2002, 31, 882-883.                                            | 0.7             | 71               |
| 63 | Photophysical and Photocatalytic Properties of Molybdates and Tungstates with a Scheelite Structure. Chemistry Letters, 2004, 33, 1216-1217.                                                                                             | 0.7             | 71               |
| 64 | Photoluminescence Properties of Mn <sup>4+</sup> -activated Perovskite-type Titanates,<br>La <sub>2</sub> MTiO <sub>6</sub> :Mn <sup>4+</sup> (M = Mg and Zn). Chemistry Letters, 2015, 44,<br>1541-1543.                                | 0.7             | 71               |
| 65 | Investigations of Electronic Structures and Photocatalytic Activities under Visible Light Irradiation<br>of Lead Molybdate Replaced with Chromium(VI). Bulletin of the Chemical Society of Japan, 2007, 80,<br>885-893.                  | 2.0             | 67               |
| 66 | Undoped Layered Perovskite Oxynitride Li <sub>2</sub> LaTa <sub>2</sub> O <sub>6</sub> N for<br>Photocatalytic CO <sub>2</sub> Reduction with Visible Light. Angewandte Chemie - International<br>Edition, 2018, 57, 8154-8158.          | 7.2             | 66               |
| 67 | Water Splitting into H2and O2over Cs2Nb4O11Photocatalyst. Chemistry Letters, 2005, 34, 54-55.                                                                                                                                            | 0.7             | 65               |
| 68 | Control of valence band potential and photocatalytic properties of NaxLa1â^'xTaO1+2xN2â^'2x oxynitride<br>solid solutions. Journal of Materials Chemistry A, 2013, 1, 3667.                                                              | 5.2             | 65               |
| 69 | Time-Resolved Infrared Absorption Study of NaTaO <sub>3</sub> Photocatalysts Doped with Alkali<br>Earth Metals. Journal of Physical Chemistry C, 2009, 113, 13918-13923.                                                                 | 1.5             | 55               |
| 70 | Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts. Journal of Solid State Chemistry, 2004, 177, 4205-4212.                                                                    | 1.4             | 54               |
| 71 | Highly Efficient Water Splitting over K3Ta3B2O12Photocatalyst without Loading Cocatalyst.<br>Chemistry Letters, 2006, 35, 274-275.                                                                                                       | 0.7             | 54               |
| 72 | Cobalt Oxide Nanoclusters on Rutile Titania as Bifunctional Units for Water Oxidation Catalysis and Visible Light Absorption: Understanding the Structure–Activity Relationship. ACS Applied Materials & Interfaces, 2017, 9, 6114-6122. | 4.0             | 54               |

| #  | Article                                                                                                                                                                                                                                                                                                                  | IF                          | CITATIONS         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|
| 73 | A Simple Preparation Method of Visible-Light-Driven BiVO4 Photocatalysts From Oxide Starting<br>Materials (Bi2O3 and V2O5) and Their Photocatalytic Activities. Journal of Solar Energy Engineering,<br>Transactions of the ASME, 2010, 132, .                                                                           | 1.1                         | 53                |
| 74 | Photocatalytic Water Splitting into H2and O2over K2LnTa5O15Powder. Chemistry Letters, 2000, 29, 1212-1213.                                                                                                                                                                                                               | 0.7                         | 52                |
| 75 | Eu <sup>2+</sup> -Activated CaSrSiO <sub>4</sub> : a New Red-Emitting Oxide Phosphor for<br>White-Light-Emitting Diodes. Applied Physics Express, 2013, 6, 072101.                                                                                                                                                       | 1.1                         | 52                |
| 76 | Photocatalytic Activities of Na2W4O13with Layered Structure. Chemistry Letters, 1997, 26, 421-422.                                                                                                                                                                                                                       | 0.7                         | 49                |
| 77 | Overall Water Splitting into H2and O2under UV Irradiation on NiO-loaded ZnNb2O6Photocatalysts<br>Consisting of d10and d0Ions. Chemistry Letters, 1999, 28, 1197-1198.                                                                                                                                                    | 0.7                         | 49                |
| 78 | Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity. Applied Surface Science, 2020, 521, 146213.                                                                                                                                              | 3.1                         | 45                |
| 79 | Synthesis of SnNb2O6Nanoplates and Their Photocatalytic Properties. Chemistry Letters, 2006, 35, 578-579.                                                                                                                                                                                                                | 0.7                         | 43                |
| 80 | Site occupancy and luminescence properties of<br>Ca <sub>3</sub> Ln(AlO) <sub>3</sub> (BO <sub>3</sub> ) <sub>4</sub> :Ce <sup>3+</sup> ,Tb <sup>3+</sup> ,N<br>(Ln = Y, Gd). Journal of Materials Chemistry C, 2017, 5, 4578-4583.                                                                                      | /ln <b>a<i>s</i>up&gt;2</b> | +< <b>\$s</b> up> |
| 81 | Hydrothermal synthesis of magnetite particles with uncommon crystal facets. Journal of Asian<br>Ceramic Societies, 2014, 2, 258-262.                                                                                                                                                                                     | 1.0                         | 37                |
| 82 | Photocatalytic water oxidation under visible light by valence band controlled oxynitride solid<br>solutions LaTaON <sub>2</sub> –SrTiO <sub>3</sub> . Journal of Materials Chemistry A, 2015, 3,<br>11824-11829.                                                                                                         | 5.2                         | 37                |
| 83 | Photoluminescence Properties of Double Perovskite Tantalates Activated with Mn <sup>4+</sup> ,<br>AE <sub>2</sub> LaTaO <sub>6</sub> :Mn <sup>4+</sup> (AE = Ca, Sr, and Ba). Journal of Physical<br>Chemistry C, 2017, 121, 18837-18844.                                                                                | 1.5                         | 35                |
| 84 | Synthesis of Zn2SiO4:Mn2+ by homogeneous precipitation using propylene glycol-modified silane.<br>Journal of Materials Chemistry, 2012, 22, 17272.                                                                                                                                                                       | 6.7                         | 33                |
| 85 | Twoâ€Dimensional Perovskite Oxynitride K <sub>2</sub> LaTa <sub>2</sub> O <sub>6</sub> N with an<br>H <sup>+</sup> /K <sup>+</sup> Exchangeability in Aqueous Solution Forming a Stable Photocatalyst<br>for Visibleâ€Light H <sub>2</sub> Evolution. Angewandte Chemie - International Edition, 2020, 59,<br>9736-9743. | 7.2                         | 33                |
| 86 | Synthesis of Titanium Dioxide Nanocrystals with Controlled Crystal- and Micro-Structures from Titanium Complexes. Nanomaterials and Nanotechnology, 2013, 3, 23.                                                                                                                                                         | 1.2                         | 31                |
| 87 | Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method. Applied Catalysis B: Environmental, 2019, 252, 222-229.                                                                                                                                                     | 10.8                        | 31                |
| 88 | Time-Resolved Infrared Spectroscopy of K3Ta3B2O12 Photocatalysts for Water Splitting. Journal of Physical Chemistry B, 2006, 110, 7883-7886.                                                                                                                                                                             | 1.2                         | 29                |
| 89 | Development of Various Metal Sulfide Photocatalysts Consisting of d <sup>0</sup> , d <sup>5</sup> ,<br>and d <sup>10</sup> Metal Ions for Sacrificial H <sub>2</sub> Evolution under Visible Light<br>Irradiation. Chemistry Letters, 2017, 46, 616-619.                                                                 | 0.7                         | 27                |
| 90 | The hydrothermal and solvothermal synthesis of LiTaO 3 photocatalyst: Suppressing the deterioration of the water splitting activity without using a cocatalyst. International Journal of Hydrogen Energy, 2015, 40, 5638-5643.                                                                                           | 3.8                         | 26                |

Ηισεκι Κάτο

| #   | Article                                                                                                                                                                                                                                                                 | IF                         | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| 91  | A water splitting system using an organo-photocathode and titanium dioxide photoanode capable of bias-free H <sub>2</sub> and O <sub>2</sub> evolution. Chemical Communications, 2016, 52, 7735-7737.                                                                   | 2.2                        | 26        |
| 92  | Highly Robust Oxynitride Phosphor against Thermal Oxidization and Hydrolysis. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 12286-12294.                                                                                                                       | 3.2                        | 25        |
| 93  | Super stable<br>(Ba,Sr)LuAl <sub>2</sub> Si <sub>2</sub> O <sub>2</sub> N <sub>5</sub> :Ce <sup>3+</sup> ,Eu <sup>2+</sup> p<br>Journal of Materials Chemistry C, 2020, 8, 4510-4517.                                                                                   | bh <b>ø<i>s</i>phors</b> . | . 24      |
| 94  | 1T/2H-MoS2 engineered by in-situ ethylene glycol intercalation for improved toluene sensing response at room temperature. Advanced Powder Technology, 2020, 31, 1868-1878.                                                                                              | 2.0                        | 24        |
| 95  | Enhancement of luminescence properties of a KSrPO4:Eu2+ phosphor prepared using a solution method with a water-soluble phosphate oligomer. Journal of Materials Chemistry C, 2013, 1, 5741.                                                                             | 2.7                        | 21        |
| 96  | Exploration of New Phosphors Using a Mineral-Inspired Approach in Combination with Solution Parallel Synthesis. Optics and Photonics Journal, 2013, 03, 5-12.                                                                                                           | 0.3                        | 21        |
| 97  | Large Redshifts in Emission and Excitation from Eu⁢sup>2+⁢/sup>-Activated<br>Sr <sub>2</sub> SiO <sub>4</sub> and<br>Ba <sub>2</sub> 2+ <sub>4</sub> Phosphors<br>Induced by Controlling Eu <sup>2+</sup> Occupancy on the Basis on                                     | 0.3                        | 20        |
| 98  | Constants to Engineering, Ophics and Photonics Journal, 2015, 05, 926-955.<br>Control of NaAlSiO4:Eu2+photoluminescence properties by charge-compensated aliovalent element<br>substitutions. Journal of Information Display, 2012, 13, 97-100.                         | 2.1                        | 19        |
| 99  | A Highly Luminous<br>LiCaPO <sub>4</sub> :Eu <sup>2+</sup> Phosphor<br>Synthesized by a Solution Method Employing a Water-Soluble Phosphate Ester. Optics and Photonics<br>Journal. 2013. 03. 13-18.                                                                    | 0.3                        | 19        |
| 100 | Lewis Acid and Base Catalysis of YNbO 4 Toward Aqueousâ€Phase Conversion of Hexose and Triose<br>Sugars to Lactic Acid in Water. ChemCatChem, 2020, 12, 350-359.                                                                                                        | 1.8                        | 18        |
| 101 | Surface Engineering of 1T/2H-MoS <sub>2</sub> Nanoparticles by O <sub>2</sub> Plasma Irradiation as<br>a Potential Humidity Sensor for Breathing and Skin Monitoring Applications. ACS Applied Nano<br>Materials, 2020, 3, 7835-7846.                                   | 2.4                        | 18        |
| 102 | Photocatalytic activities of Cu3xLa1–xTa7O19 solid solutions for H2 evolution under visible light<br>irradiation. Catalysis Science and Technology, 2013, 3, 3147.                                                                                                      | 2.1                        | 17        |
| 103 | Luminescence properties of BaZrSi3O9:Eu synthesized by an aqueous solution method. Journal of Luminescence, 2015, 158, 328-332.                                                                                                                                         | 1.5                        | 17        |
| 104 | Undoped Layered Perovskite Oxynitride Li <sub>2</sub> LaTa <sub>2</sub> O <sub>6</sub> N for<br>Photocatalytic CO <sub>2</sub> Reduction with Visible Light. Angewandte Chemie, 2018, 130, 8286-8290.                                                                   | 1.6                        | 17        |
| 105 | Design of crystal structures, morphologies and functionalities of titanium oxide using water-soluble complexes and molecular control agents. Polymer Journal, 2015, 47, 78-83.                                                                                          | 1.3                        | 16        |
| 106 | Crystal structures and luminescence properties of Eu <sup>2+</sup> -activated new<br>NaBa <sub>0.5</sub> Ca <sub>0.5</sub> PO <sub>4</sub> and<br>Na <sub>3</sub> Ba <sub>2</sub> Ca(PO <sub>4</sub> ) <sub>3</sub> . Dalton Transactions, 2015, 44,<br>1900-1904.      | 1.6                        | 15        |
| 107 | Utilization of Perovskite-Type Oxynitride<br>La <sub>0.5</sub> Sr <sub>0.5</sub> Ta <sub>0.5</sub> Ti <sub>0.5</sub> O <sub>2</sub> N as an<br>O <sub>2</sub> -Evolving Photocatalyst in Z-Scheme Water Splitting. ACS Applied Energy Materials,<br>2021. 4. 2056-2060. | 2.5                        | 15        |
| 108 | Synthesis of spindle and square bipyramid-shaped anatase-type titanium dioxide crystals by a solvothermal method using ethylenediamine. Journal of the Ceramic Society of Japan, 2012, 120, 494-499.                                                                    | 0.5                        | 14        |

Ηιdeki Kato

| #   | Article                                                                                                                                                                                                                                                                | IF        | CITATIONS       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|
| 109 | Hierarchical structures of rutile exposing high-index facets. Journal of Crystal Growth, 2015, 418,<br>86-91.                                                                                                                                                          | 0.7       | 14              |
| 110 | Large enhancement of photocatalytic activity by chemical etching of TiO2 crystallized glass. APL<br>Materials, 2014, 2, .                                                                                                                                              | 2.2       | 13              |
| 111 | Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Applied<br>Catalysis B: Environmental, 2017, 206, 444-448.                                                                                                                     | 10.8      | 13              |
| 112 | A high-luminescence BaZrSi3O9:Eu2+ blue–green-emitting phosphor: Synthesis and mechanism. Journal of Luminescence, 2017, 181, 211-216.                                                                                                                                 | 1.5       | 13              |
| 113 | Expansion of the photoresponse window of a BiVO <sub>4</sub> photocatalyst by doping with chromium( <scp>vi</scp> ). RSC Advances, 2018, 8, 38140-38145.                                                                                                               | 1.7       | 13              |
| 114 | Photoluminescence Properties of Layered Perovskite-Type Strontium Scandium Oxyfluoride Activated<br>With Mn4+. Frontiers in Chemistry, 2018, 6, 467.                                                                                                                   | 1.8       | 13              |
| 115 | Hydrothermal synthesis of hierarchical TiO2 microspheres using a novel titanium complex coordinated by picolinic acid. Journal of the Ceramic Society of Japan, 2011, 119, 513-516.                                                                                    | 0.5       | 12              |
| 116 | Orange Emission from<br>(Ba <sub>1-<i>X</i></sub> Sr <i><sub>X</sub></i> ) <sub>4</sub> Al <sub>2</sub> S <sub>7</sub> :Eu <sup>2+<!--<br-->Phosphors with Visible Light Excitation. ECS Journal of Solid State Science and Technology, 2013, 2,<br/>P3107-P3111</sup> | sup>Jhioa | aluminate<br>12 |
| 117 | Insights into a selective synthesis of anatase, rutile, and brookite-type titanium dioxides by a hydrothermal treatment of titanium complexes. Journal of Materials Research, 2014, 29, 90-97.                                                                         | 1.2       | 12              |
| 118 | Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation<br>ChemInform, 2004, 35, no.                                                                                                                                                 | 0.1       | 11              |
| 119 | Improvement of hydrogen evolution under visible light over Zn1â^'2x(CuGa)xGa2S4 photocatalysts by synthesis utilizing a polymerizable complex method. Journal of Materials Chemistry A, 2015, 3, 14239-14244.                                                          | 5.2       | 11              |
| 120 | Discovery of Novel Delafossite-type Compounds Composed of Copper(I) Lithium Titanium with<br>Photocatalytic Activity for H2 Evolution under Visible Light. Chemistry Letters, 2015, 44, 973-975.                                                                       | 0.7       | 10              |
| 121 | Effects of the SrTiO <sub>3</sub> support on visible-light water oxidation with<br>Co <sub>3</sub> O <sub>4</sub> nanoparticles. Dalton Transactions, 2017, 46, 16959-16966.                                                                                           | 1.6       | 10              |
| 122 | Ce <sup>4+</sup> -Based Compounds Capable of Photoluminescence by Charge Transfer Excitation<br>under Near-Ultraviolet–Visible Light. Inorganic Chemistry, 2018, 57, 14524-14531.                                                                                      | 1.9       | 10              |
| 123 | Synthesis of an oxynitride-based green phosphor Ba3Si6O12N2:Eu2+via an aqueous-solution process, using propylene-glycol-modified silane. Journal of Information Display, 2012, 13, 107-111.                                                                            | 2.1       | 9               |
| 124 | B-site-ordered Double-perovskite Oxide Up-conversion Phosphors Doped with Yb and Ho, Er, or Tm.<br>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 593-596.                                                                      | 0.1       | 9               |
| 125 | Effect of hydroxy and carboxy groups on anisotropic growth of rutile-type titania under hydrothermal conditions. Journal of Asian Ceramic Societies, 2017, 5, 320-325.                                                                                                 | 1.0       | 8               |
| 126 | A Waterâ€Splitting System with a Cobalt (II,III) Oxide Coâ€Catalystâ€Loaded Bismuth Vanadate Photoanode<br>Along with an Organoâ€Photocathode. ChemElectroChem, 2020, 7, 5029-5035.                                                                                    | 1.7       | 8               |

Ηιdeki Kato

| #   | Article                                                                                                                                                                                                                                                                                        | IF                     | CITATIONS                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|
| 127 | Photocatalytic Properties of HCa2Nb3O10 Prepared by Polymerizable Complex Method. Journal of the Ceramic Society of Japan, 2007, 115, 511-513.                                                                                                                                                 | 0.5                    | 7                         |
| 128 | Photocatalytic Water Splitting over LaTa7O19 Composed of TaO7 Pentagonal Bipyramids and TaO6<br>Octahedra. Chemistry Letters, 2013, 42, 744-746.                                                                                                                                               | 0.7                    | 7                         |
| 129 | Synthesis, Structure, and Photoluminescence of a Novel Oxynitride<br>BaYSi <sub>2</sub> O <sub>5</sub> N Activated by Eu <sup>2+</sup> and Ce <sup>3+</sup> . Chemistry<br>Letters, 2017, 46, 795-797.                                                                                         | 0.7                    | 7                         |
| 130 | Hydrothermal Synthesis of Pseudocubic Rutile-Type Titania Particles. Ceramics, 2019, 2, 56-63.                                                                                                                                                                                                 | 1.0                    | 7                         |
| 131 | Synthesis and luminescence properties of a Cyanâ€blue thiosilicateâ€based Phosphor SrSi2S5:Eu2+. Journal of Information Display, 2010, 11, 135-139.                                                                                                                                            | 2.1                    | 6                         |
| 132 | The significance of phosphate source in the preparation of functional luminescent phosphate materials. Journal of the Ceramic Society of Japan, 2014, 122, 626-629.                                                                                                                            | 0.5                    | 6                         |
| 133 | Effect of Site Occupancies on Deep-red Emission from Eu <sup>2+</sup> -activated<br>Ca <sub>2</sub> SiO <sub>4</sub> Phosphor. Chemistry Letters, 2016, 45, 321-323.                                                                                                                           | 0.7                    | 6                         |
| 134 | Observation of visible light-driven water splitting by TiO2 crystallized glass. International Journal of<br>Hydrogen Energy, 2016, 41, 22055-22058.                                                                                                                                            | 3.8                    | 6                         |
| 135 | Synthesis of Rare Earth Niobate and Tantalate Powders via a Peroxo Complex Route. Chemistry Letters, 2017, 46, 1515-1517.                                                                                                                                                                      | 0.7                    | 6                         |
| 136 | Development of two novel Eu2+-activated phosphors in the Na–Sc–Si–O system and their photoluminescence properties. Journal of Luminescence, 2014, 154, 285-289.                                                                                                                                | 1.5                    | 5                         |
| 137 | Growth of TiO <sub>2</sub> microspheres with a radially oriented configuration. CrystEngComm, 2017, 19, 4832-4837.                                                                                                                                                                             | 1.3                    | 5                         |
| 138 | Analysis of growth kinetics and impact of NH3 on the morphology evolution of hexagonal-prism shaped Y4O(OH)9NO3/Y2O3 single crystals. Materials Research Bulletin, 2017, 95, 597-606.                                                                                                          | 2.7                    | 5                         |
| 139 | Development of a Novel Green-Emitting Phosphate Phosphor<br>KSrY(PO <sub>4</sub> ) <sub>2</sub> :Eu <sup>2+</sup> . Optics and<br>Photonics Journal, 2013, 03, 19-24.                                                                                                                          | 0.3                    | 5                         |
| 140 | Electrical Properties of Amorphous Carbon Semiconductor Prepared Using a Naphthalene Precursor.<br>Bulletin of the Chemical Society of Japan, 2013, 86, 45-50.                                                                                                                                 | 2.0                    | 4                         |
| 141 | Twoâ€Dimensional Perovskite Oxynitride K <sub>2</sub> LaTa <sub>2</sub> O <sub>6</sub> N with an<br>H <sup>+</sup> /K <sup>+</sup> Exchangeability in Aqueous Solution Forming a Stable Photocatalyst<br>for Visibleâ€Light H <sub>2</sub> Evolution. Angewandte Chemie, 2020, 132, 9823-9830. | 1.6                    | 4                         |
| 142 | Synthesis of a Novel Bluish-Green Emitting Oxynitride<br>Ca <sub>3</sub> Al <sub>8</sub> Si <sub&am<br>Phosphor in a<br/>CaAl<sub>4-x</sub>Si<sub>x</sub>O<sub< td=""><td>np;gt;4&amp;a<br/>0.3<br/>&gt;7</td><td>mp;lt;/sub&amp;an<br/>4<br/>'-x</td></sub<></sub&am<br>                      | np;gt;4&a<br>0.3<br>>7 | mp;lt;/sub&an<br>4<br>'-x |
| 143 | Solid Solution Sy. Optics and Photonics Journal, 2013, 03, 29-33.<br>Ultraviolet Luminescence of Rb4Ta6O17with a Layered Structure. Chemistry Letters, 1999, 28, 959-960.                                                                                                                      | 0.7                    | 3                         |
| 144 | Novel Titanium Complexes with a Reversible Structural Change on Solvent Adsorption and Desorption. Chemistry Letters, 2015, 44, 1050-1052.                                                                                                                                                     | 0.7                    | 3                         |

Ηιdeki Κάτο

| #   | Article                                                                                                                                                                                                                                                                                                                    | IF                     | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|
| 145 | Structural Change in SrSiO <sub>3</sub> Induced by Introduction of Nitrogen. Chemistry Letters, 2018, 47, 1327-1329.                                                                                                                                                                                                       | 0.7                    | 3         |
| 146 | Synthesis of Ba1â^'Sr YSi2O5N and discussion based on structure analysis and DFT calculation. Journal of Solid State Chemistry, 2019, 276, 266-271.                                                                                                                                                                        | 1.4                    | 3         |
| 147 | Influences of pulverization and annealing treatment on the photocatalytic activity of<br>BiVO <sub>4</sub> for oxygen evolution. Sustainable Energy and Fuels, 2022, 6, 1698-1707.                                                                                                                                         | 2.5                    | 3         |
| 148 | Fabrication of high-efficiency YAG:Ce3+ phosphors via concurrent optimization of firing atmosphere and fluxing agent. Optical Materials, 2022, 128, 112386.                                                                                                                                                                | 1.7                    | 3         |
| 149 | Syntheses of Silicate Phosphors by Aqueous Solution Techniques using Water-Dispersible Inorganic Si<br>Cluster. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy,<br>2015, 62, 127-133.                                                                                            | 0.1                    | 2         |
| 150 | Effect of Eu <sup>2+</sup> concentration on the photoluminescence properties of<br>red-emitting CaSrSiO <sub>4</sub> :Eu <sup>2+</sup> phosphors. Journal of the<br>Ceramic Society of Japan, 2016, 124, 823-826.                                                                                                          | 0.5                    | 2         |
| 151 | Exploration of New Phosphors Using a Mineral-Inspired Approach in Combination with Solution Parallel Synthesis. , 2016, , 1-40.                                                                                                                                                                                            |                        | 2         |
| 152 | Crystal structures of Ca <sub>4+<i>x</i> </sub> Y <sub>3–<i>x</i><br/></sub> Si <sub>7</sub> O <sub>15+<i>x</i> </sub> N <sub>5–<i>x</i> </sub> (0 ≤i>x ≤) comprising<br>an isolated [Si <sub>7</sub> (O,N) <sub>19</sub> ] unit. Acta Crystallographica Section E:<br>Crystallographic Communications, 2019, 75, 260-263. | g of<br>0.2            | 2         |
| 153 | Water Splitting into H2 and O2 over Cs2Nb4O11 Photocatalyst ChemInform, 2005, 36, no.                                                                                                                                                                                                                                      | 0.1                    | 1         |
| 154 | Synthesis of<br>(Ca <sub>1â<sup>~</sup></sub> <i><sub>x</sub></i> Sr <i><sub>x</sub></i> ) <sub>4</sub> Si <sub>2</sub> O <sub>7</sub><br>oxyfluoride solid solutions and their photoluminescence properties activated by Eu <sup>2+</sup><br>ions. Journal of the Ceramic Society of Japan, 2014, 122, 630-633.           | F <sub>2<br/>0.5</sub> |           |
| 155 | Synthesis of picolinate-iron(III) compounds through an aqueous solution process. Journal of the<br>Ceramic Society of Japan, 2015, 123, 751-755.                                                                                                                                                                           | 0.5                    | 1         |
| 156 | Self-assembly of polyethyleneamine-intercalated H <sub>2</sub> Ti <sub>2</sub> O <sub>5</sub><br>nanoparticles into spherical agglomerates. Journal of Materials Research, 2016, 31, 564-572.                                                                                                                              | 1.2                    | 1         |
| 157 | Visible Light Response of Wide Band Gap Semiconductor Photocatalysts by Doping of Transition Metal<br>Ions. Aiming at Water Splitting Hyomen Kagaku, 2003, 24, 31-38.                                                                                                                                                      | 0.0                    | 1         |
| 158 | Contror of Surface Structure and Effect of Cocatalyst Aiming at Water Splitting over Photocatalyst.<br>Hyomen Kagaku, 2006, 27, 386-391.                                                                                                                                                                                   | 0.0                    | 1         |
| 159 | Water–Dispersed Silicates and Water–Soluble Phosphates, and Their Use in Sol–Gel Synthesis of<br>Silicate–and Phosphate–Based Materials. , 2016, , 1-27.                                                                                                                                                                   |                        | 1         |
| 160 | Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure ChemInform, 2003, 34, no.                                                                                                                                                                           | 0.1                    | 0         |
| 161 | Strategies for the Development of Visible-Light-Driven Photocatalysts for Water Splitting.<br>ChemInform, 2005, 36, no.                                                                                                                                                                                                    | 0.1                    | 0         |
| 162 | Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS—CuInS2—AgInS2 Solid-Solution Photocatalyst ChemInform, 2005, 36, no.                                                                                                                                                 | 0.1                    | 0         |

| #   | Article                                                                                                                                                          | IF | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 163 | Waterâ€Dispersed Silicates and Waterâ€Soluble Phosphates, and Their Use in Solâ€Gel Synthesis of Silicate―<br>and Phosphateâ€Based Materials. , 2018, , 205-231. |    | 0         |