
Pavel Saska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849713/publications.pdf Version: 2024-02-01

DAVIEL SASKA

#	Article	IF	CITATIONS
1	Response of the spring wheat–cereal aphid system to drought: support for the plant vigour hypothesis. Journal of Pest Science, 2023, 96, 523-537.	3.7	5
2	Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. Journal of Applied Ecology, 2022, 59, 176-187.	4.0	11
3	Demographic Characteristics and Population Simulation of Newly Invasive Fall Armyworm on <i>Arachis hypogaea</i> (Fabales: Fabaceae) and Dominant Green Manure Plant in Taiwan. Journal of Economic Entomology, 2022, 115, 1146-1155.	1.8	1
4	Seed properties and bacterial communities are associated with feeding preferences of a seed-eating beetle. Plant and Soil, 2022, 480, 329-348.	3.7	1
5	Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. Journal of Pest Science, 2021, 94, 423-434.	3.7	22
6	Direct and Knock-on Effects of Water Stress on the Nutrient Contents of <i>Triticum aestivum</i> (Poales: Poaceae) and Population Growth of <i>Rhopalosiphum padi</i> (Hemiptera:) Tj ETQq0 0 0 rg	gB 1./ Overl	oc ង 10 Tf 50 :
7	A non-native woody plant compromises conservation benefits of mid-field woodlots for birds in farmland. Global Ecology and Conservation, 2021, 26, e01458.	2.1	0
8	Comparison of Artificial Diets and Natural Prey for Mass Rearing of Orius strigicollis (Hemiptera:) Tj ETQq0 0 0 rg Entomology, 2021, 114, 1523-1532.	BT /Overlo 1.8	ock 10 Tf 50 4 2
9	Bias introduced by the simplified method for the estimation of the intrinsic rate of increase of aphid populations: A meta-analysis. Entomologia Generalis, 2021, 41, 305-316.	3.1	6
10	Attractiveness of oilseed rape cultivars to Brassicogethes aeneus and Ceutorhynchus obstrictus as a potential control strategy. Plant, Soil and Environment, 2021, 67, 608-615.	2.2	0
11	Predicting aphid abundance on winter wheat using suction trap catches. Plant Protection Science, 2020, 56, 35-45.	1.4	3
12	Antibiosis to <i>Metopolophium dirhodum</i> (Homoptera: Aphididae) in Spring Wheat and Emmer Cultivars. Journal of Economic Entomology, 2020, 113, 2979-2985.	1.8	3
13	Which Seed Properties Determine the Preferences of Carabid Beetle Seed Predators?. Insects, 2020, 11, 757.	2.2	27
14	The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Scientific Reports, 2020, 10, 19315.	3.3	35
15	Age-Stage, two-sex life table: an introduction to theory, data analysis, and application. Entomologia Generalis, 2020, 40, 103-124.	3.1	208
16	Temporary non-crop habitats within arable fields: The effects of field defects on carabid beetle assemblages. Agriculture, Ecosystems and Environment, 2020, 293, 106856.	5.3	13
17	Persistence and Changes in Morphological Traits of Herbaceous Seeds Due to Burial in Soil. Agronomy, 2020, 10, 448.	3.0	8
18	Do properties and species of weed seeds affect their consumption by carabid beetles?. Acta Zoologica Academiae Scientiarum Hungaricae, 2020, 66, 37-48.	0.5	2

PAVEL SASKA

#	Article	IF	CITATIONS
19	Impact of an invasive tree on arthropod assemblages in woodlots isolated within an intensive agricultural landscape. Diversity and Distributions, 2019, 25, 1800-1813.	4.1	16
20	Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific Reports, 2019, 9, 8967.	3.3	42
21	Prey contaminated with neonicotinoids induces feeding deterrent behavior of a common farmland spider. Scientific Reports, 2019, 9, 15895.	3.3	13
22	Preferences of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zoologica Academiae Scientiarum Hungaricae, 2019, 65, 57-76.	0.5	30
23	Aphids (Homoptera: Aphididae) on Winter Wheat: Predicting Maximum Abundance of Metopolophium dirhodum. Journal of Economic Entomology, 2018, 111, 1751-1759.	1.8	29
24	Economic Injury Level and Demography-Based Control Timing Projection of Spodoptera litura (Lepidoptera: Noctuidae) at Different Growth Stages of Arachis hypogaea. Journal of Economic Entomology, 2017, 110, 755-762.	1.8	5
25	Fast Population Growth in Physogastry Reproduction of Luciaphorus perniciosus (Acari:) Tj ETQq1 1 0.784314	rgBT /Over	$\log_{22} 10$ Tf 50
26	The efficacy of insecticides against eggs and nymphs of Aleyrodes proletella (Hemiptera: Aleyrodidae) under laboratory conditions. Crop Protection, 2017, 98, 40-45.	2.1	6
27	The role of invertebrates in seedling establishment in a heterocarpic plant, <i>Atriplex sagittata</i> . Annals of Applied Biology, 2017, 171, 264-276.	2.5	3
28	Annual predictions of the peak numbers of <i>Sitobion avenae</i> infesting winter wheat. Journal of Applied Entomology, 2017, 141, 352-362.	1.8	7
29	Treating Prey With Glyphosate Does Not Alter the Demographic Parameters and Predation of the <i>Harmonia axyridis</i> (Coleoptera: Coccinellidae). Journal of Economic Entomology, 2017, 110, tow325.	1.8	8
30	Host plants mixture and fitness of <i>Kolla paulula</i> : with an evaluation of the application of Weibull function. Journal of Applied Entomology, 2017, 141, 329-338.	1.8	12
31	Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum. Scientific Reports, 2016, 6, 27801.	3.3	37
32	Comparison of Demographic Parameters and Predation Rates of <i>Orius strigicollis</i> (Hemiptera:) Tj ETQq0 (cautella(Lepidoptera: Pyralidae). Journal of Economic Entomology, 2016, 109, 1529-1538.	0 0 rgBT /0 1.8	verlock 10 Tf 11
33	Survival and Reproductive Strategies in Two-Spotted Spider Mites: Demographic Analysis of Arrhenotokous Parthenogenesis of <i>Tetranychus urticae</i> (Acari: Tetranychidae). Journal of Economic Entomology, 2016, 109, 502-509.	1.8	43
34	The effects of overwintering, sex, year, field identity and vegetation at the boundary of fields on the body condition of Anchomenus dorsalis (Coleoptera: Carabidae). European Journal of Entomology, 2014, 111, 608-614.	1.2	3
35	Thermal constants of egg development in carabid beetles - variation resulting from using different estimation methods and among geographically distant European populations. European Journal of Entomology, 2014, 111, 621-630.	1.2	3
36	Comparing methods of weed seed exposure to predators. Annals of Applied Biology, 2014, 164, 301-312.	2.5	17

PAVEL SASKA

#	Article	IF	CITATIONS
37	Editorial: 16 th European carabidologists meeting, Prague 2013. European Journal of Entomology, 2014, 111, 598-599.	1.2	0
38	Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction. Journal of Applied Ecology, 2013, 50, 181-189.	4.0	86
39	A method to study slug predation on seedlings in the field. Annals of Applied Biology, 2013, 162, 89-99.	2.5	4
40	The habitat-specific effects of highway proximity on ground-dwelling arthropods: Implications for biodiversity conservation. Biological Conservation, 2013, 164, 22-29.	4.1	25
41	Molecular approach to describing a seedâ€based food web: the postâ€dispersal granivore community of an invasive plant. Ecology and Evolution, 2013, 3, 1642-1652.	1.9	31
42	Diversity of carabid beetles (Coleoptera: Carabidae) under three different control strategies against European corn borer in maize. Plant Protection Science, 2013, 49, 146-153.	1.4	3
43	Susceptibility of the early growth stages of volunteer oilseed rape to invertebrate predation. Plant Protection Science, 2012, 48, 44-50.	1.4	11
44	Efficiency of host utilisation by coleopteran parasitoid. Journal of Insect Physiology, 2012, 58, 35-40.	2.0	2
45	The effects of habitat, density, gender and duration on overwintering success in <i>Bembidion lampros</i> (Coleoptera: Carabidae). Journal of Applied Entomology, 2012, 136, 225-233.	1.8	10
46	Temporal variation in elytral colour polymorphism in Hippodamia variegata (Coleoptera:) Tj ETQq0 0 0 rgBT /Ove	erlock 10 1 1.2	f 5 <u>9</u> 382 Td (
47	Effect of size, taxonomic affiliation and geographic origin of dandelion (Taraxacum agg.) seeds on predation by ground beetles (Carabidae, Coleoptera). Basic and Applied Ecology, 2011, 12, 89-96.	2.7	22
48	Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys, 2011, 100, 55-148.	1.1	280
49	Temperature and rate of seed consumption by ground beetles (Carabidae). Biological Control, 2010, 52, 91-95.	3.0	44
50	Larval and adult seed consumption affected by the degree of food specialization in <i>Amara</i> (Coleoptera: Carabidae). Journal of Applied Entomology, 2010, 134, 659-666.	1.8	32
51	Seed consumption by millipedes. Pedobiologia, 2010, 54, 31-36.	1.2	16
52	Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants. Agriculture, Ecosystems and Environment, 2009, 134, 126-135.	5.3	57
53	Granivory in terrestrial isopods. Ecological Entomology, 2008, 33, 742-747.	2.2	32

⁵⁴Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation
on weed seeds. Bulletin of Entomological Research, 2008, 98, 169-181.1.068

PAVEL SASKA

#	Article	IF	CITATIONS
55	Effect of diet on the fecundity of three carabid beetles. Physiological Entomology, 2008, 33, 188-192.	1.5	20
56	Synchronization of a Coleopteran Parasitoid, <i>Brachinus</i> spp. (Coleoptera: Carabidae), and Its Host. Annals of the Entomological Society of America, 2008, 101, 533-538.	2.5	11
57	Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic and Applied Ecology, 2007, 8, 343-353.	2.7	129
58	The significance of a grassy field boundary for the spatial distribution of carabids within two cereal fields. Agriculture, Ecosystems and Environment, 2007, 122, 427-434.	5.3	57
59	Seasonal variation in seed predation by adult carabid beetles. Entomologia Experimentalis Et Applicata, 2006, 118, 157-162.	1.4	43
60	Consumption of fresh and buried seed by ground beetles (Coleoptera: Carabidae). European Journal of Entomology, 2006, 103, 361-364.	1.2	43
61	Post-dispersal predation of Taraxacum officinale (dandelion) seed. Journal of Ecology, 2005, 93, 345-352.	4.0	64
62	Contrary food requirements of the larvae of two Curtonotus (Coleoptera: Carabidae: Amara) species. Annals of Applied Biology, 2005, 147, 139-144.	2.5	24
63	Development of the beetle parasitoids, Brachinus explodens and B. crepitans (Coleoptera: Carabidae). Journal of Zoology, 2004, 262, 29-36.	1.7	44
64	Carabid larvae as predators of weed seeds: granivory in larvae of Amara eurynota (Coleoptera:) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 38

65	Temperature and development of central European species of Amara (Coleoptera: Carabidae). European Journal of Entomology, 2003, 100, 509-515.	1.2	34
66	Gastrophysa viridula (Coleoptera: Chrysomelidae) in the Czech Republic: Decline in a once abundant invasive oligophagous consumer of Rumex. European Journal of Entomology, 0, 118, 250-254.	1.2	0
67	Burial-induced changes in the seed preferences of carabid beetles (Coleoptera: Carabidae). European Journal of Entomology, 0, 116, 133-140.	1.2	9