List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849702/publications.pdf Version: 2024-02-01

ΠΟΝΟ ΙΗ ΜΟΟΝ

#	Article	IF	CITATIONS
1	Molybdenum carbide catalysts for water–gas shift. Catalysis Letters, 2000, 65, 193-195.	1.4	218
2	Molybdenum Carbide Water–Gas Shift Catalyst for Fuel Cell-Powered Vehicles Applications. Catalysis Letters, 2004, 92, 17-24.	1.4	81
3	Nickel-based tri-reforming catalyst for the production of synthesis gas. Applied Catalysis A: General, 2007, 332, 153-158.	2.2	79
4	The effect of promoters in La 0.9 M 0.1 Ni 0.5 Fe 0.5 O 3 (M = Sr, Ca) perovskite catalysts on dry reforming of methane. Fuel Processing Technology, 2015, 134, 404-413.	3.7	77
5	Combined steam and CO2 reforming of methane over La1-xSrxNiO3 perovskite oxides. Catalysis Today, 2018, 299, 242-250.	2.2	77
6	Studies on gasoline fuel processor system for fuel-cell powered vehicles application. Applied Catalysis A: General, 2001, 215, 1-9.	2.2	76
7	Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catalysis Today, 2003, 87, 153-162.	2.2	72
8	Steam CO 2 reforming of methane over La 1â^'x Ce x NiO 3 perovskite catalysts. International Journal of Hydrogen Energy, 2015, 40, 11831-11839.	3.8	70
9	Electrocatalytic reforming of carbon dioxide by methane in SOFC system. Catalysis Today, 2003, 87, 255-264.	2.2	57
10	Hydrogen Production by Catalytic Reforming of Gaseous Hydrocarbons (Methane & LPG). Catalysis Surveys From Asia, 2008, 12, 188-202.	1.0	54
11	The effect of Zn addition into NiFe2O4 catalyst for high-temperature shift reaction of natural gas reformate assuming no external steam addition. International Journal of Hydrogen Energy, 2012, 37, 11218-11226.	3.8	48
12	Fischer–Tropsch Synthesis over cobalt based catalyst supported on different mesoporous silica. Catalysis Today, 2012, 185, 168-174.	2.2	48
13	Copper decorated perovskite an efficient catalyst for low temperature hydrogen production by steam reforming of glycerol. International Journal of Hydrogen Energy, 2015, 40, 11428-11435.	3.8	47
14	Ni-based catalyst for partial oxidation reforming of iso-octane. Applied Catalysis A: General, 2004, 272, 53-60.	2.2	44
15	Studies on the conversion of glycerol to 1,2-propanediol over Ru-based catalyst under mild conditions. Catalysis Today, 2011, 174, 10-16.	2.2	43
16	Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC. International Journal of Hydrogen Energy, 2019, 44, 21010-21019.	3.8	43
17	Dry reforming of methane over Ni/ZrO 2 -Al 2 O 3 catalysts: Effect of preparation methods. Journal of the Taiwan Institute of Chemical Engineers, 2018, 90, 25-32.	2.7	40
18	The synthesis of methanol from CO/CO2/H2 gas over Cu/Ce1â^'xZrxO2 catalysts. Journal of Molecular Catalysis A, 2013, 378, 255-262.	4.8	39

#	Article	IF	CITATIONS
19	The characterization of micro-structure of cobalt on γ-Al2O3 for FTS: Effects of pretreatment on Ru–Co/γ-Al2O3. Fuel, 2015, 149, 118-129.	3.4	37
20	The Nature of Metastable AA' Graphite: Low Dimensional Nano- and Single-Crystalline Forms. Scientific Reports, 2016, 6, 39624.	1.6	34
21	Studies on the steam and CO2 reforming of methane for GTL-FPSO applications. Catalysis Today, 2011, 174, 31-36.	2.2	33
22	Fischer–Tropsch synthesis on cobalt/Al ₂ O ₃ -modified SiC catalysts: effect of cobalt–alumina interactions. Catalysis Science and Technology, 2014, 4, 343-351.	2.1	32
23	Pyrolysis of Trifluoromethane to Produce Hexafluoropropylene. Industrial & Engineering Chemistry Research, 2002, 41, 2895-2902.	1.8	31
24	Role of support on higher alcohol synthesis from syngas. Applied Catalysis A: General, 2014, 480, 128-133.	2.2	31
25	Steam-CO2 reforming of methane on Ni/γ-Al2O3-deposited metallic foam catalyst for GTL-FPSO process. Fuel Processing Technology, 2013, 112, 28-34.	3.7	28
26	Preparation of Thermally Stable Mesostructured Nano-sized TiO2 Particles by Modified Sol–Gel Method Using Ionic Liquid. Catalysis Letters, 2008, 123, 84-89.	1.4	27
27	The process design and simulation for the methanol production on the FPSO (floating production,) Tj ETQq1 1	0.784314 2.7	rgBT /Overloci
28	Deactivation Behavior of Co/SiC Fischer–Tropsch Catalysts by Formation of Filamentous Carbon. Catalysis Letters, 2013, 143, 18-22.	1.4	25
29	Reinterpretation of Single-Wall Carbon Nanotubes by Raman Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 14003-14009.	1.5	25
30	Preparation and evaluation of a metallic foam catalyst for steam-CO2 reforming of methane in GTL-FPSO process. Fuel Processing Technology, 2014, 124, 97-103.	3.7	24
31	Catalytic pyrolysis of chlorodifluoromethane over metal fluoride catalysts to produce tetrafluoroethylene. Applied Catalysis A: General, 2005, 292, 130-137.	2.2	23
32	A Review on Catalysts Development for Steam Reforming of Biodiesel Derived Glycerol; Promoters and Supports. Catalysts, 2020, 10, 910.	1.6	23
33	Synthesis of LaNiO ₃ perovskite using an EDTA-cellulose method and comparison with the conventional Pechini method: application to steam CO ₂ reforming of methane. RSC Advances, 2016, 6, 112885-112898.	1.7	21
34	Partial Oxidation Reforming Catalyst for Fuel Cell-Powered Vehicles Applications. Catalysis Letters, 2003, 89, 207-212.	1.4	20
35	Hydrogen Production by Catalytic Reforming of Liquid Hydrocarbons. Catalysis Surveys From Asia, 2011, 15, 25-36.	1.0	20
36	Partial oxidation (POX) reforming of gasoline for fuel-cell powered vehicles applications. Korean Journal of Chemical Engineering, 2002, 19, 921-927.	1.2	19

#	Article	IF	CITATIONS
37	CO2 Reforming of Methane over Ni0/La2O3 Catalyst Without Reduction Step: Effect of Calcination Atmosphere. Topics in Catalysis, 2017, 60, 697-705.	1.3	19
38	Sustainable Process for the Synthesis of Value-Added Products Using Glycerol as a Useful Raw Material. Catalysis Surveys From Asia, 2019, 23, 10-22.	1.0	19
39	Hydrogen production by steam reforming of methane over mixed Ni/MgAlÂ+ÂCrFe 3 O 4 catalysts. International Journal of Hydrogen Energy, 2015, 40, 11848-11854.	3.8	18
40	Hydrocracking of FT-wax to fuels over non-noble metal catalysts. Fuel, 2016, 185, 339-347.	3.4	18
41	Effect of lanthanum group promoters on Cu/(mixture of ZnO and Zn-Al-spinnel-oxides) catalyst for methanol synthesis by hydrogenation of CO and CO2 mixtures. Fuel, 2021, 283, 118987.	3.4	18
42	Production of synthesis gas by autothermal reforming of iso-octane and toluene over metal modified Ni-based catalyst. Catalysis Today, 2008, 136, 266-272.	2.2	16
43	Effect of LaAlO3-supported modified Ni-based catalysts on aqueous phase reforming of glycerol. Research on Chemical Intermediates, 2015, 41, 9603-9614.	1.3	16
44	Aqueous Phase Reforming of Glycerol Over Ni-Based Catalysts for Hydrogen Production. Journal of Nanoscience and Nanotechnology, 2011, 11, 7311-7314.	0.9	15
45	Aqueous phase reforming and hydrodeoxygenation of ethylene glycol on Pt/SiO2–Al2O3: effects of surface acidity on product distribution. RSC Advances, 2016, 6, 68433-68444.	1.7	15
46	Microstructure of FTS studies over spherical Co/ \hat{I}^3 -Al2O3. Catalysis Today, 2015, 250, 102-114.	2.2	14
47	Effect of catalytic reactor bed dilution on product distribution for Fischer-Tropsch synthesis over Ru/Co/Al 2 O 3 catalyst. Catalysis Today, 2018, 303, 136-142.	2.2	14
48	Hydrogenation of dibenzyltoluene and the catalytic performance of Pt/ <scp> Al ₂ O ₃ </scp> with various Pt loadings for hydrogen production from perhydroâ€dibenzyltoluene. International Journal of Energy Research, 2022, 46, 6672-6688.	2.2	14
49	Effect of Bimetallic Ni–Cr Catalysts for Steam-CO ₂ Reforming of Methane at High Pressure. Journal of Nanoscience and Nanotechnology, 2015, 15, 5259-5263.	0.9	12
50	Synthesis and characterization of Al-modified SBA-15 for Fischer–Tropsch synthesis (FTS) reaction. Research on Chemical Intermediates, 2016, 42, 319-334.	1.3	12
51	Kinetic models of Fischer-Tropsch synthesis reaction over granule-type Pt-promoted Co/Al2O3 catalyst. Korean Journal of Chemical Engineering, 2018, 35, 1263-1273.	1.2	12
52	CO/CO2 hydrogenation for the production of lighter hydrocarbons over SAPO-34 modified hybrid FTS catalysts. Catalysis Today, 2022, 388-389, 410-416.	2.2	12
53	Studies on the steam CO2 reforming of methane over ordered mesoporous nickel–magnesium–alumina catalysts. Research on Chemical Intermediates, 2018, 44, 1131-1148.	1.3	11
54	Low Temperature WGS Catalysts for Hydrogen Station and Fuel Processor Applications. Catalysis Surveys From Asia, 2009, 13, 191-204.	1.0	10

#	Article	IF	CITATIONS
55	The Effect of Cobalt Loading on Fischer Tropsch Synthesis Over Silicon Carbide Supported Catalyst. Journal of Nanoscience and Nanotechnology, 2015, 15, 396-399.	0.9	10
56	Glycerol steam reforming over Ni–Fe–Ce/Al2O3 catalyst for hydrogen production. Research on Chemical Intermediates, 2016, 42, 289-304.	1.3	10
57	Shape controlled synthesis of nanostructured magnesium oxide particles in supercritical carbon dioxide with ethanol cosolvent. Materials Research Bulletin, 2013, 48, 2817-2823.	2.7	9
58	Nano-Sized Cobalt Based Fischer-Tropsch Catalysts for Gas-to-Liquid Process Applications. Journal of Nanoscience and Nanotechnology, 2010, 10, 3700-3704.	0.9	8
59	Effect of cobalt supported on meso–macro porous hydrotalcite in Fischer–Tropsch synthesis. RSC Advances, 2016, 6, 104280-104293.	1.7	8
60	Effect of Mn promoter on Rh/tungsten carbide on product distributions of alcohols and hydrocarbons by CO hydrogenation. RSC Advances, 2016, 6, 101535-101543.	1.7	8
61	Raman Radial Mode Revealed from Curved Graphene. Journal of Physical Chemistry Letters, 2017, 8, 2597-2601.	2.1	8
62	Hydrogenation of CO2 to synthetic natural gas over supported nickel catalyst: effect of support on methane selectivity. Research on Chemical Intermediates, 2017, 43, 2931-2943.	1.3	8
63	Aqueous Phase Reforming of Glycerol Over the Pd Loaded Ni/Al2O3 Catalysts. Journal of Nanoscience and Nanotechnology, 2011, 11, 1443-1446.	0.9	8
64	Steam Reforming of Glycerol into Hydrogen Over Nano-Size Ni-Based Hydrotalcite-Like Catalysts. Journal of Nanoscience and Nanotechnology, 2011, 11, 7394-7398.	0.9	7
65	Preparation and Characterization of Ni-Based Perovskite Catalyst for Steam CO ₂ Reforming of Methane. Journal of Nanoscience and Nanotechnology, 2013, 13, 4334-4337.	0.9	7
66	Pyrolysis of a Mixture of Trifluoromethane and Tetrafluoroethylene to Produce Hexafluoropropylene. Journal of Chemical Engineering of Japan, 2004, 37, 318-325.	0.3	7
67	Production of Hydrogen by Autothermal Reforming of Propane over Ni/δ-Al2O3. Journal of Nanoscience and Nanotechnology, 2006, 6, 3396-3398.	0.9	6
68	Design, analysis, and performance evaluation ofÂsteam-CO 2 reforming reactor for syngas production in GTL process. International Journal of Hydrogen Energy, 2015, 40, 11785-11790.	3.8	6
69	Effects of polyvinyl-pyrrolidone in a polyol method on preparation of a perovskite-type catalyst for steam-CO2 reforming of methane. International Journal of Hydrogen Energy, 2015, 40, 1481-1489.	3.8	6
70	Studies on the Role of Nitrogen in the Feed for Fischer-Tropsch Synthesis Under Fixed-Bed Reactor System. Journal of Nanoscience and Nanotechnology, 2016, 16, 1894-1897.	0.9	6
71	The Effect of Fe in Perovskite Catalysts for Steam CO ₂ Reforming of Methane. Journal of Nanoscience and Nanotechnology, 2016, 16, 1938-1941.	0.9	5
72	Production of TFE by Catalytic Pyrolysis of Chlorodifluoromethane (CHC1F2). Studies in Surface Science and Catalysis, 2006, , 233-236.	1.5	4

#	Article	IF	CITATIONS
73	Carbon Deposition from the CO ₂ -Steam Reforming of Methane Over Modified Ni/ <i>γ</i> -Al ₂ O ₃ Catalysts. Journal of Nanoscience and Nanotechnology, 2015, 15, 391-395.	0.9	4
74	Studies on the Fischer-Tropsch synthesis over RuCo/SiC-Al2O3 structured catalyst. Catalysis Today, 2020, 348, 157-165.	2.2	4
75	Preparation and Characterization of Ni/ZrTiAlOx Catalyst via Sol-Gel and Impregnation Methods for Low Temperature Dry Reforming of Methane. Catalysts, 2020, 10, 1335.	1.6	4
76	Steam Reforming of Glycerol for Hydrogen Production Over Supported Nickel Catalysts on Alumina. Journal of Nanoscience and Nanotechnology, 2013, 13, 653-656.	0.9	3
77	Studies on the synthesis of higher alcohol over modified Cu/ZnO/Al2O3 catalyst. Research on Chemical Intermediates, 2018, 44, 3813-3822.	1.3	3
78	Development of fixed bed reactor for application in GTL-FPSO: The effect of nitrogen and carbon dioxide contents in feed gas on Fischer-Tropsch synthesis reaction over Ru/Co/Al2O3 catalyst. Catalysis Today, 2020, 353, 73-81.	2.2	3
79	CO2 Reforming by CH4 over Ni-YSZ Modified Catalysts. Studies in Surface Science and Catalysis, 2004, 153, 149-152.	1.5	2
80	Carbon Dioxide Reduction Technology with SOFC System. Studies in Surface Science and Catalysis, 2004, , 193-196.	1.5	2
81	Development of Anode Catalyst for Internal Reforming of CH4 by CO2 in SOFC System. Studies in Surface Science and Catalysis, 2006, , 613-616.	1.5	2
82	Studies on Nanosized Iron Based Modified Catalyst for Fischer-Tropsch Synthesis Application. Journal of Nanoscience and Nanotechnology, 2011, 11, 1447-1450.	0.9	2
83	Dehydration of Glycerol Over Niobia-Supported Silicotungstic Acid Catalysts. Journal of Nanoscience and Nanotechnology, 2013, 13, 339-343.	0.9	2
84	Hydrogenolysis of Glycerol to 1,2-Propanediol Over Clay Based Catalysts. Journal of Nanoscience and Nanotechnology, 2015, 15, 8783-8789.	0.9	2
85	Development of fixed bed reactor for applications in GTL-FPSO: The effect of dilution material for control of reaction heat. Catalysis Today, 2023, 423, 112715.	2.2	2
86	Studies on the Internal Reforming of CH4 by CO2 in SOFC System. Studies in Surface Science and Catalysis, 2006, , 617-620.	1.5	1
87	Dispersion of Cobalt Nanoparticles on Nanowires Grown on Silicon Carbide-Alumina Nanocomposites. Journal of Nanoscience and Nanotechnology, 2017, 17, 9360-9360.	0.9	0