Wang Zhaocai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849427/publications.pdf Version: 2024-02-01

ΜΑΝΟ ΖΗΛΟΟΛΙ

#	Article	IF	CITATIONS
1	Solving the Family Traveling Salesperson Problem in the Adleman–Lipton Model Based on DNA Computing. IEEE Transactions on Nanobioscience, 2022, 21, 75-85.	2.2	23
2	A Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term Memory. Water (Switzerland), 2022, 14, 610.	1.2	73
3	A combined model based on sparrow search optimized BP neural network and Markov chain for precipitation prediction in Zhengzhou City, China. Journal of Water Supply: Research and Technology - AQUA, 2022, 71, 782-800.	0.6	9
4	Multi-objective optimal allocation of regional water resources based on slime mould algorithm. Journal of Supercomputing, 2022, 78, 18288-18317.	2.4	22
5	A parallel biological computing algorithm to solve the vertex coloring problem with polynomial time complexity. Journal of Intelligent and Fuzzy Systems, 2021, 40, 3957-3967.	0.8	4
6	Prediction and analysis of domestic water consumption based on optimized grey and Markov model. Water Science and Technology: Water Supply, 2021, 21, 3887-3899.	1.0	20
7	A Parallel Bioinspired Algorithm for Chinese Postman Problem Based on Molecular Computing. Computational Intelligence and Neuroscience, 2021, 2021, 1-13.	1.1	6
8	Study of optimal allocation of water resources in Dujiangyan irrigation district of China based on an improved genetic algorithm. Water Science and Technology: Water Supply, 2021, 21, 2989-2999.	1.0	17
9	Parallel DNA Algorithms of Generalized Traveling Salesman Problem-Based Bioinspired Computing Model. International Journal of Computational Intelligence Systems, 2021, 14, 228.	1.6	11
10	Prediction and analysis of water resources demand in Taiyuan City based on principal component analysis and BP neural network. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 1272-1286.	0.6	13
11	A novel bio-heuristic computing algorithm to solve the capacitated vehicle routing problem based on Adleman–Lipton model. BioSystems, 2019, 184, 103997.	0.9	25
12	Solving the 0-1 knapsack problem based on a parallel intelligent molecular computing model system. Journal of Intelligent and Fuzzy Systems, 2017, 33, 2719-2726.	0.8	3
13	A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model. BioSystems, 2017, 162, 59-65.	0.9	17
14	Solving the maximal matching problem with DNA molecules in Adleman–Lipton model. International Journal of Biomathematics, 2016, 09, 1650019.	1.5	2
15	A New Algorithm to Solve the Maximal Connected Subgraph Problem Based on Parallel Molecular Computing. Journal of Computational and Theoretical Nanoscience, 2016, 13, 7692-7695.	0.4	1
16	Solving the Maximum Weight Vertex Independent Problem with DNA Molecules in Adleman-Lipton Model. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1940-1943.	0.4	0
17	A New Biologically DNA Computational Algorithm to Solve the <i>k</i> -Vertex Cover Problem. Journal of Computational and Theoretical Nanoscience, 2015, 12, 524-526.	0.4	5
18	A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing. International Journal of Molecular Sciences, 2015, 16, 25338-25352.	1.8	12

WANG ZHAOCAI

#	Article	IF	CITATIONS
19	Solving the Maximum Weighted Clique Problem Based on Parallel Biological Computing Model. Mathematical Problems in Engineering, 2015, 2015, 1-8.	0.6	1
20	A Biological Computing Algorithm to Solve K-Closure Problem. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1818-1820.	0.4	2
21	A New Parallel Computing Algorithm to Get the Cubic Subgraph for a Simple Graph. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3006-3008.	0.4	0
22	Solving the Longest Path Problem Using a Biologically DNA Computational Model. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1096-1099.	0.4	0
23	A parallel algorithm for solving the n-queens problem based on inspired computational model. BioSystems, 2015, 131, 22-29.	0.9	11
24	A Biological Computing Algorithm to Seek the Maximum Degree of Vertices in a Simple Undirected Graph. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3464-3467.	0.4	0
25	A Parallel Computational Algorithm for Solving the Maximum k-Vertex Weighted Clique Problem. Journal of Computational and Theoretical Nanoscience, 2015, 12, 6002-6005.	0.4	0
26	A biological algorithm to solve the assignment problem based on DNA molecules computation. Applied Mathematics and Computation, 2014, 244, 183-190.	1.4	14
27	A Biological Algorithm to Solve the Maximum Complete Subgraph Problem Based on Adleman-Lipton Model. Journal of Computational and Theoretical Nanoscience, 2014, 11, 2310-2312.	0.4	1
28	Algorithm of Solving the Maximum Edges Independent Set Problem Based on DNA Molecules Computation. Journal of Computational and Theoretical Nanoscience, 2014, 11, 961-963.	0.4	1
29	A New Algorithm for Set Splitting Problem Based DNA Molecules Computation. Journal of Computational and Theoretical Nanoscience, 2014, 11, 899-900.	0.4	0
30	Solving the Minimum Vertex Cover Problem with DNA Molecules in Adleman-Lipton Model. Journal of Computational and Theoretical Nanoscience, 2014, 11, 521-523.	0.4	3
31	Solving the Maximum Independent Set Problem based on Molecule Parallel Supercomputing. Applied Mathematics and Information Sciences, 2014, 8, 2361-2366.	0.7	2
32	A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation. BioSystems, 2013, 114, 1-7.	0.9	16
33	Fast parallel algorithm to the minimum edge cover problem based on DNA molecular computation. Applied Mathematics and Information Sciences, 2013, 7, 711-716.	0.7	3
34	Solving traveling salesman problem in the Adleman–Lipton model. Applied Mathematics and Computation, 2012, 219, 2267-2270.	1.4	22
35	A DNA procedure for solving the shortest path problem. Applied Mathematics and Computation, 2006, 183, 79-84.	1.4	13
36	Research on water resources optimal scheduling problem based on parallel biological computing. , 0,		4

³⁶ 111, 88-93.

#	Article	IF	CITATIONS
37	A new parallel algorithm to solve one classic water resources optimal allocation problem based on inspired computational model. , 0, 160, 214-218.		7
38	A bio-inspired algorithm for a classical water resources allocation problem based on Adleman-Lipton model. , 0, 185, 168-174.		7