## Gail W T Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849414/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular<br>mycorrhizal fungi: results from longâ€ŧerm field experiments. Ecology Letters, 2009, 12, 452-461.                            | 6.4 | 600       |
| 2  | MYCORRHIZAE INFLUENCE PLANT COMMUNITY STRUCTURE AND DIVERSITY IN TALLGRASS PRAIRIE. Ecology, 1999, 80, 1187-1195.                                                                                                                 | 3.2 | 387       |
| 3  | Mycorrhizal phenotypes and the <scp>L</scp> aw of the <scp>M</scp> inimum. New Phytologist, 2015, 205, 1473-1484.                                                                                                                 | 7.3 | 387       |
| 4  | Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American<br>Journal of Botany, 1998, 85, 1732-1738.                                                                                  | 1.7 | 354       |
| 5  | The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant and Soil, 2002, 244, 319-331.                                                                                                   | 3.7 | 164       |
| 6  | Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus<br>additions drive aboveâ€ground productivity in a tallgrass prairie. Journal of Ecology, 2014, 102,<br>1649-1660.              | 4.0 | 145       |
| 7  | Effects of mycorrhizal symbiosis on tallgrass prairie plant-herbivore interactions. Ecology Letters, 2004, 8, 61-69.                                                                                                              | 6.4 | 107       |
| 8  | Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia, 2001, 93, 233-242.                                                                                | 1.9 | 106       |
| 9  | Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie. Restoration Ecology, 2010, 18, 40-49.                                                                                                                    | 2.9 | 90        |
| 10 | MycoDB, a global database of plant response to mycorrhizal fungi. Scientific Data, 2016, 3, 160028.                                                                                                                               | 5.3 | 90        |
| 11 | Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and<br>Improved Grassland Biomass. Frontiers in Microbiology, 2018, 9, 848.                                                             | 3.5 | 89        |
| 12 | Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology, 2018, 1, 116.                                                                                    | 4.4 | 70        |
| 13 | Livestock grazing regulates ecosystem multifunctionality in semiâ€arid grassland. Functional Ecology, 2018, 32, 2790-2800.                                                                                                        | 3.6 | 62        |
| 14 | Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. African Journal of Ecology, 2004, 42, 328-337.                                                                            | 0.9 | 41        |
| 15 | The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes:<br>Enhancing sustainability through plant-microbial partnership. Agriculture, Ecosystems and<br>Environment, 2016, 233, 432-440. | 5.3 | 37        |
| 16 | Effects of mycorrhizae on growth and demography of tallgrass prairie forbs. American Journal of<br>Botany, 2001, 88, 1452-1457.                                                                                                   | 1.7 | 35        |
| 17 | Variation in root system traits among African semiâ€arid savanna grasses: Implications for drought<br>tolerance. Austral Ecology, 2013, 38, 383-392.                                                                              | 1.5 | 35        |
| 18 | Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. Mycorrhiza, 2020, 30, 79-95.                                                                                   | 2.8 | 35        |

GAIL W T WILSON

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: chemical warfare in nature. Plant and Soil, 2014, 385, 165-179.         | 3.7 | 31        |
| 20 | Mycorrhizal suppression alters plant productivity and forb establishment in a grass-dominated prairie restoration. Plant Ecology, 2011, 212, 1675-1685.                                  | 1.6 | 29        |
| 21 | Defoliation and arbuscular mycorrhizal fungi shape plant communities in overgrazed semiarid grasslands. Ecology, 2018, 99, 1847-1856.                                                    | 3.2 | 29        |
| 22 | Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi<br>in semi-arid grasslands. Mycorrhiza, 2018, 28, 117-127.                           | 2.8 | 26        |
| 23 | Phosphorus and mowing improve native alfalfa establishment, facilitating restoration of grassland productivity and diversity. Land Degradation and Development, 2019, 30, 647-657.       | 3.9 | 21        |
| 24 | Mycorrhizal symbioses influence the trophic structure of the Serengeti. Journal of Ecology, 2018, 106, 536-546.                                                                          | 4.0 | 20        |
| 25 | Plant Diversity and Fertilizer Management Shape the Belowground Microbiome of Native Grass<br>Bioenergy Feedstocks. Frontiers in Plant Science, 2019, 10, 1018.                          | 3.6 | 19        |
| 26 | Determinants of native and nonâ€native plant community structure on an oceanic island. Ecosphere,<br>2017, 8, e01927.                                                                    | 2.2 | 16        |
| 27 | Influence of alternative soil amendments on mycorrhizal fungi and cowpea production. Heliyon, 2018,<br>4, e00704.                                                                        | 3.2 | 16        |
| 28 | Following legume establishment, microbial and chemical associations facilitate improved productivity in degraded grasslands. Plant and Soil, 2019, 443, 273-292.                         | 3.7 | 14        |
| 29 | Advancing Synthetic Ecology: A Database System to Facilitate Complex Ecological Meta-Analyses.<br>Bulletin of the Ecological Society of America, 2010, 91, 235-243.                      | 0.2 | 13        |
| 30 | Predicting spatial extent of invasive earthworms on an oceanic island. Diversity and Distributions, 2016, 22, 1013-1023.                                                                 | 4.1 | 12        |
| 31 | Plant functional group influences arbuscular mycorrhizal fungal abundance and hyphal contribution to soil CO2 efflux in temperate grasslands. Plant and Soil, 2018, 432, 157-170.        | 3.7 | 12        |
| 32 | Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity. Mycorrhiza, 2022, 32, 15-32.                                                | 2.8 | 11        |
| 33 | Nematode communities indicate anthropogenic alterations to soil dynamics across diverse grasslands. Ecological Indicators, 2021, 132, 108338.                                            | 6.3 | 9         |
| 34 | Assessing the influence of farm fertility amendments, field management, and sorghum genotypes on soil microbial communities and grain quality. Applied Soil Ecology, 2017, 119, 367-374. | 4.3 | 6         |
| 35 | Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae. Scientific Reports, 2020, 10, 20287.                           | 3.3 | 6         |
| 36 | Utilizing mycorrhizal responses to guide selective breeding for agricultural sustainability. Plants<br>People Planet, 2021, 3, 578-587.                                                  | 3.3 | 5         |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of smallholder farm practices on the abundance of arbuscular mycorrhizal fungi in rural<br>Zambia. Pedobiologia, 2018, 69, 11-16.                                  | 1.2 | 4         |
| 38 | Linking sorghum nutrition and production with arbuscular mycorrhizal fungi and alternative soil amendments. Journal of Plant Nutrition and Soil Science, 2018, 181, 211-219. | 1.9 | 3         |