
Vincent-Henri Peuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential impact of government lockdown policies on reducing air pollution levels and related mortality in Europe. Scientific Reports, 2022, 12, 726.	1.6	20
2	European primary emissions of criteria pollutants and greenhouse gases in 2020 modulated by the COVID-19 pandemic disruptions. Earth System Science Data, 2022, 14, 2521-2552.	3.7	15
3	Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF. Geoscientific Model Development, 2022, 15, 4881-4912.	1.3	8
4	Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns. Atmospheric Chemistry and Physics, 2021, 21, 773-797.	1.9	84
5	Systematic detection of local CH ₄ anomalies by combining satellite measurements with high-resolution forecasts. Atmospheric Chemistry and Physics, 2021, 21, 5117-5136.	1.9	24
6	The need for Panâ€European automatic pollen and fungal spore monitoring: A stakeholder workshop position paper. Clinical and Translational Allergy, 2021, 11, e12015.	1.4	18
7	Estimating lockdown-induced European NO ₂ changes using satellite and surface observations and air quality models. Atmospheric Chemistry and Physics, 2021, 21, 7373-7394.	1.9	55
8	Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmospheric Chemistry and Physics, 2021, 21, 14427-14469.	1.9	37
9	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.	4.8	126
10	Global Air Quality: An Inter-Disciplinary Approach to Exposure Assessment for Burden of Disease Analyses. Atmosphere, 2021, 12, 48.	1.0	14
11	EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds. Natural Hazards and Earth System Sciences, 2021, 21, 3367-3405.	1.5	8
12	Modelling CO ₂ weather – why horizontal resolution matters. Atmospheric Chemistry and Physics, 2019, 19, 7347-7376.	1.9	49
13	The value of satellite observations in the analysis and short-range prediction of Asian dust. Atmospheric Chemistry and Physics, 2019, 19, 987-998.	1.9	24
14	Ensemble forecasts of air quality in eastern China – Part 2: Evaluation of the MarcoPolo–Panda prediction system, version 1. Geoscientific Model Development, 2019, 12, 1241-1266.	1.3	25
15	The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, 2019, 19, 3515-3556.	1.9	524
16	Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1. Geoscientific Model Development, 2019, 12, 33-67.	1.3	39
17	Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geoscientific Model Development, 2019, 12, 4627-4659.	1.3	71
18	The Use of Satellite Data in the Copernicus Atmosphere Monitoring Service (Cams). , 2018, , .		3

The Use of Satellite Data in the Copernicus Atmosphere Monitoring Service (Cams). , 2018, , . 18

2

VINCENT-HENRI PEUCH

#	Article	IF	CITATIONS
19	Five steps to improve air-quality forecasts. Nature, 2018, 561, 27-29.	13.7	38
20	The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015. Atmospheric Chemistry and Physics, 2017, 17, 1945-1983.	1.9	127
21	Development of West-European PM 2.5 and NO 2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environmental Research, 2016, 151, 1-10.	3.7	145
22	Feedbacks of dust and boundary layer meteorology during a dust storm in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2015, 15, 12909-12933.	1.9	43
23	Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS. Atmospheric Chemistry and Physics, 2015, 15, 5275-5303.	1.9	109
24	MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chemistry and Physics, 2015, 15, 8115-8130.	1.9	70
25	A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geoscientific Model Development, 2015, 8, 2777-2813.	1.3	214
26	Tropospheric chemistry in the Integrated Forecasting System of ECMWF. Geoscientific Model Development, 2015, 8, 975-1003.	1.3	204
27	Tropospheric CO vertical profiles deduced from total columns using data assimilation: methodology and validation. Atmospheric Measurement Techniques, 2014, 7, 3035-3057.	1.2	7
28	Monitoring the lowermost tropospheric ozone with thermal infrared observations from a geostationary platform: performance analyses for a future dedicated instrument. Atmospheric Measurement Techniques, 2014, 7, 391-407.	1.2	3
29	Combined data assimilation of ozone tropospheric columns and stratospheric profiles in a highâ€resolution <scp>CTM</scp> . Quarterly Journal of the Royal Meteorological Society, 2014, 140, 966-981.	1.0	20
30	Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin. Atmospheric Chemistry and Physics, 2014, 14, 11427-11446.	1.9	26
31	Forecasting global atmospheric CO ₂ . Atmospheric Chemistry and Physics, 2014, 14, 11959-11983.	1.9	74
32	Analysis of the potential of one possible instrumental configuration of the next generation of IASI instruments to monitor lower tropospheric ozone. Atmospheric Measurement Techniques, 2013, 6, 621-635.	1.2	16
33	Diagnosing the transition layer at extratropical latitudes using MLS O ₃ and MOPITT CO analyses. Atmospheric Chemistry and Physics, 2013, 13, 7225-7240.	1.9	12
34	The effect of using limited scene-dependent averaging kernels approximations for the implementation of fast observing system simulation experiments targeted on lower tropospheric ozone. Atmospheric Measurement Techniques, 2013, 6, 1869-1881.	1.2	4
35	How realistic are air quality hindcasts driven by forcings from climate model simulations?. Geoscientific Model Development, 2012, 5, 1565-1587.	1.3	15
36	Monitoring Air Quality from Space: The Case for the Geostationary Platform. Bulletin of the American Meteorological Society, 2012, 93, 221-233.	1.7	41

VINCENT-HENRI PEUCH

#	Article	IF	CITATIONS
37	Impact of a time-dependent background error covariance matrix on air quality analysis. Geoscientific Model Development, 2012, 5, 1075-1090.	1.3	15
38	3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model. Atmospheric Chemistry and Physics, 2012, 12, 3219-3240.	1.9	44
39	Stratosphere-troposphere ozone exchange from high resolution MLS ozone analyses. Atmospheric Chemistry and Physics, 2012, 12, 6129-6144.	1.9	23
40	A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmospheric Chemistry and Physics, 2012, 12, 1-87.	1.9	265
41	Objective classification of air quality monitoring sites over Europe. Atmospheric Environment, 2012, 47, 111-123.	1.9	69
42	Validity of satellite measurements used for the monitoring of UV radiation risk on health. Atmospheric Chemistry and Physics, 2011, 11, 13377-13394.	1.9	26
43	A thermal infrared instrument onboard a geostationary platform for CO and O ₃ measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE). Atmospheric Measurement Techniques, 2011, 4, 1637-1661.	1.2	36
44	A geostationary thermal infrared sensor to monitor the lowermost troposphere: O ₃ and CO retrieval studies. Atmospheric Measurement Techniques, 2011, 4, 297-317.	1.2	22
45	Comparison of OMI NO ₂ tropospheric columns with an ensemble of global and European regional air quality models. Atmospheric Chemistry and Physics, 2010, 10, 3273-3296.	1.9	165
46	A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation. Atmospheric Chemistry and Physics, 2010, 10, 6097-6115.	1.9	20
47	Global model simulations of air pollution during the 2003 European heat wave. Atmospheric Chemistry and Physics, 2010, 10, 789-815.	1.9	67
48	Midlatitude stratosphere – troposphere exchange as diagnosed by MLS O ₃ and MOPITT CO assimilated fields. Atmospheric Chemistry and Physics, 2010, 10, 2175-2194.	1.9	54
49	Impact of West African Monsoon convective transport and lightning NO _x production upon the upper tropospheric composition: a multi-model study. Atmospheric Chemistry and Physics, 2010, 10, 5719-5738.	1.9	57
50	Current status of the ability of the GEMS/MACC models to reproduce the tropospheric CO vertical distribution as measured by MOZAIC. Geoscientific Model Development, 2010, 3, 501-518.	1.3	56
51	The Concordiasi Project in Antarctica. Bulletin of the American Meteorological Society, 2010, 91, 69-86.	1.7	78
52	Global Chemistry Simulations in the AMMA Multimodel Intercomparison Project. Bulletin of the American Meteorological Society, 2010, 91, 611-624.	1.7	21
53	Prev'air: An Operational Forecasting and Mapping System for Air Quality in Europe. Bulletin of the American Meteorological Society, 2009, 90, 73-84.	1.7	122
54	Equatorial total column of nitrous oxide as measured by IASI on MetOp-A: implications for transport processes. Atmospheric Chemistry and Physics, 2009, 9, 3947-3956.	1.9	39

#	Article	IF	CITATIONS
55	Equatorial transport as diagnosed from nitrous oxide variability. Atmospheric Chemistry and Physics, 2009, 9, 8173-8188.	1.9	22
56	Equilibrium of sinks and sources of sulphate over Europe: comparison between a six-year simulation and EMEP observations. Atmospheric Chemistry and Physics, 2009, 9, 4505-4519.	1.9	14
57	On the extraction of wind information from the assimilation of ozone profiles in Météo–France 4-D-Var operational NWP suite. Atmospheric Chemistry and Physics, 2009, 9, 4855-4867.	1.9	43
58	Predictability of European air quality: Assessment of 3 years of operational forecasts and analyses by the PREV'AIR system. Journal of Geophysical Research, 2008, 113, .	3.3	134
59	TOWARD A MONITORING AND FORECASTING SYSTEM FOR ATMOSPHERIC COMPOSITION. Bulletin of the American Meteorological Society, 2008, 89, 1147-1164.	1.7	253
60	Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations. Atmospheric Chemistry and Physics, 2008, 8, 3231-3246.	1.9	81
61	Examination of the 2002 major warming in the southern hemisphere using ground-based and Odin/SMR assimilated data: stratospheric ozone distributions and tropic/mid-latitude exchange. Canadian Journal of Physics, 2007, 85, 1287-1300.	0.4	34
62	Impact of land convection on troposphere-stratosphere exchange in the tropics. Atmospheric Chemistry and Physics, 2007, 7, 5639-5657.	1.9	65
63	The Assimilation of Envisat data (ASSET) project. Atmospheric Chemistry and Physics, 2007, 7, 1773-1796.	1.9	69
64	A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes. Atmospheric Chemistry and Physics, 2007, 7, 5815-5860.	1.9	107
65	The Global Atmospheric Environment for the Next Generation. Environmental Science & Technology, 2006, 40, 3586-3594.	4.6	338
66	The ASSET intercomparison of ozone analyses: method and first results. Atmospheric Chemistry and Physics, 2006, 6, 5445-5474.	1.9	110
67	Evaluation of 2001 springtime CO transport overWest Africa using MOPITT CO measurements assimilated in a global chemistry transport model. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 163-176.	0.8	34
68	Measured and modeled dry deposition velocities over the ESCOMPTE area. Atmospheric Research, 2005, 74, 89-116.	1.8	48
69	Observed and modelled "chemical weather―during ESCOMPTE. Atmospheric Research, 2005, 74, 161-189.	1.8	96
70	The ESCOMPTE program: an overview. Atmospheric Research, 2004, 69, 241-279.	1.8	173
71	Sieving Properties of Zeolites for C6â^'C8Hydrocarbons: The Effects of a Trimethyltin Complex Grafted on the Pore Edge. Journal of Physical Chemistry B, 1998, 102, 8696-8703.	1.2	9
72	Nitriles and Hydrogen on a Nickel Catalyst: Theoretical Evidence of a Process Competing with the Total Hydrogenation Reaction. Journal of Catalysis, 1996, 159, 383-393.	3.1	25

#	Article	IF	CITATIONS
73	Adsorption Modes of Acetonitrile on Ni(111), Ni(100), and Ni(110). A Semiempirical Theoretical Study. Langmuir, 1995, 11, 3828-3844.	1.6	22