Dingcai Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849090/publications.pdf

Version: 2024-02-01

		38742	34986
126	10,096	50	98
papers	citations	h-index	g-index
129	129	129	12020
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design and Preparation of Porous Polymers. Chemical Reviews, 2012, 112, 3959-4015.	47.7	1,491
2	Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nature Communications, 2015, 6, 7221.	12.8	554
3	Radical Covalent Organic Frameworks: A General Strategy to Immobilize Openâ€Accessible Polyradicals for Highâ€Performance Capacitive Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 6814-6818.	13.8	342
4	Porous Polymers as Multifunctional Material Platforms toward Taskâ€Specific Applications. Advanced Materials, 2019, 31, e1802922.	21.0	315
5	Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Scientific Reports, 2015, 5, 8225.	3.3	303
6	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	21.0	300
7	Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing. Advanced Science, 2021, 8, 2003627.	11.2	291
8	Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nature Communications, 2019, 10, 1363.	12.8	268
9	Nitrogen-Enriched Nanocarbons with a 3-D Continuous Mesopore Structure from Polyacrylonitrile for Supercapacitor Application. Journal of Physical Chemistry C, 2010, 114, 8581-8586.	3.1	234
10	Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chemical Communications, 2014, 50, 4788-4790.	4.1	229
11	Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. Journal of Materials Chemistry, 2011, 21, 1970-1976.	6.7	220
12	Preparation of low-density carbon aerogels by ambient pressure drying. Carbon, 2004, 42, 2033-2039.	10.3	199
13	Synthesis of Well-Defined Microporous Carbons by Molecular-Scale Templating with Polyhedral Oligomeric Silsesquioxane Moieties. Journal of the American Chemical Society, 2014, 136, 4805-4808.	13.7	185
14	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	14.9	176
15	A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nature Nanotechnology, 2022, 17, 613-621.	31.5	152
16	Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol–gel polymerization method. Carbon, 2006, 44, 675-681.	10.3	138
17	Design and preparation of porous carbons from conjugated polymer precursors. Materials Today, 2017, 20, 629-656.	14.2	133
18	Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains. Journal of Materials Chemistry, 2010, 20, 731-735.	6.7	121

#	Article	IF	CITATIONS
19	Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer. Scientific Reports, 2013, 3, 1119.	3.3	117
20	Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking. Energy and Environmental Science, 2014, 7, 3006.	30.8	111
21	Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nature Communications, 2021, 12, 3303.	12.8	111
22	Reversible CO ₂ capture with porous polymers using the humidity swing. Energy and Environmental Science, 2013, 6, 488-493.	30.8	106
23	An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7000.	10.3	104
24	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	38.1	103
25	Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes. Carbon, 2015, 84, 419-425.	10.3	97
26	Interface Engineering of Carbonâ€Based Nanocomposites for Advanced Electrochemical Energy Storage. Advanced Materials Interfaces, 2018, 5, 1800430.	3.7	95
27	High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes. Nanoscale, 2013, 5, 4678.	5.6	94
28	Templated Synthesis of Nitrogenâ€Enriched Nanoporous Carbon Materials from Porogenic Organic Precursors Prepared by ATRP. Angewandte Chemie - International Edition, 2014, 53, 3957-3960.	13.8	94
29	Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde. Journal of Non-Crystalline Solids, 2005, 351, 915-921.	3.1	90
30	Ultrathin Yet Robust Single Lithiumâ€lon Conducting Quasiâ€Solidâ€State Polymerâ€Brush Electrolytes Enable Ultralongâ€Life and Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2100943.	21.0	88
31	Preparation of Polymeric Nanoscale Networks from Cylindrical Molecular Bottlebrushes. ACS Nano, 2012, 6, 6208-6214.	14.6	86
32	Nanoporous Polystyrene and Carbon Materials with Core–Shell Nanosphere-Interconnected Network Structure. Macromolecules, 2011, 44, 5846-5849.	4.8	84
33	Water-Dispersible, Responsive, and Carbonizable Hairy Microporous Polymeric Nanospheres. Journal of the American Chemical Society, 2015, 137, 13256-13259.	13.7	81
34	Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene–divinylbenzene copolymer nanospheres. Chemical Communications, 2010, 46, 5927.	4.1	78
35	In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors. Journal of Materials Chemistry A, 2013, 1, 15207.	10.3	78
36	Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties. Scientific Reports, 2013, 3, 1430.	3.3	78

#	Article	IF	CITATIONS
37	Mechanochemistry: A Green, Activation-Free and Top-Down Strategy to High-Surface-Area Carbon Materials. ACS Sustainable Chemistry and Engineering, 2017, 5, 8535-8540.	6.7	78
38	Reactive Template-Induced Self-Assembly to Ordered Mesoporous Polymeric and Carbonaceous Materials. ACS Nano, 2013, 7, 1748-1754.	14.6	69
39	Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler. Physical Chemistry Chemical Physics, 2010, 12, 3270.	2.8	68
40	Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6356-6362.	10.3	67
41	Nanonetwork-structured yolk-shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon, 2018, 140, 433-440.	10.3	66
42	Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. Chemical Science, 2017, 8, 2101-2106.	7.4	62
43	Flexible Counter Electrodes Based on Mesoporous Carbon Aerogel for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22615-22621.	3.1	61
44	A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation. Journal of Power Sources, 2012, 200, 8-13.	7.8	59
45	Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers–Graphene Composite. ACS Applied Materials & Interfaces, 2016, 8, 1011-1018.	8.0	59
46	Peritoneumâ€Inspired Janus Porous Hydrogel with Antiâ€Deformation, Antiâ€Adhesion, and Proâ€Healing Characteristics for Abdominal Wall Defect Treatment. Advanced Materials, 2022, 34, e2108992.	21.0	58
47	Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage. Energy Storage Materials, 2017, 7, 8-16.	18.0	55
48	Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer, 2018, 137, 195-200.	3.8	55
49	A Protective Layer for Lithium Metal Anode: Why and How. Small Methods, 2021, 5, e2001035.	8.6	55
50	Synthesis of organic and carbon aerogels from phenol–furfural by two-step polymerization. Microporous and Mesoporous Materials, 2006, 96, 115-120.	4.4	54
51	Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. Carbon, 2019, 141, 704-711.	10.3	53
52	Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol-furfural and supercritical drying in ethanol. Journal of Applied Polymer Science, 2005, 96, 1429-1435.	2.6	49
53	Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. Physical Chemistry Chemical Physics, 2011, 13, 8852.	2.8	49
54	Facile fabrication of novel highly microporous carbons with superior size-selective adsorption and supercapacitance properties. Nanoscale, 2013, 5, 10824.	5. 6	48

#	Article	IF	CITATIONS
55	Application of ordered mesoporous carbon in solid phase microextraction for fast mass transfer and high sensitivity. Chemical Communications, 2016, 52, 6829-6832.	4.1	48
56	Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications. Chemical Communications, 2018, 54, 7159-7162.	4.1	48
57	Stepwise Crosslinking: A Facile Yet Versatile Conceptual Strategy to Nanomorphologyâ€Persistent Porous Organic Polymers. Advanced Materials, 2017, 29, 1700723.	21.0	47
58	Novel Nanoporous Carbons from Well-Defined Poly(styrene-co-acrylonitrile)-Grafted Silica Nanoparticles. Chemistry of Materials, 2011, 23, 2024-2026.	6.7	46
59	Nanoporous carbons with a 3D nanonetwork-interconnected 2D ordered mesoporous structure for rapid mass transport. Journal of Materials Chemistry A, 2013, 1, 3768.	10.3	46
60	Allâ€inâ€One Porous Polymer Adsorbents with Excellent Environmental Chemosensory Responsivity, Visual Detectivity, Superfast Adsorption, and Easy Regeneration. Advanced Materials, 2019, 31, e1900104.	21.0	46
61	FeS/FeNC decorated N,S-co-doped porous carbon for enhanced ORR activity in alkaline media. Chemical Communications, 2020, 56, 12921-12924.	4.1	45
62	<i>In situ</i> synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes. Chemical Communications, 2019, 55, 2644-2647.	4.1	44
63	Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5170-5177.	8.0	40
64	Preparation of Activated Ordered Mesoporous Carbons with a Channel Structure. Langmuir, 2008, 24, 2967-2969.	3.5	39
65	The role of mass transport pathway in wormholelike mesoporous carbon for supercapacitors. Physical Chemistry Chemical Physics, 2010, 12, 10842.	2.8	39
66	Preparation of antibacterial poly(methyl methacrylate) by solution blending with waterâ€insoluble antibacterial agent poly[(tertâ€buty1amino) ethyl methacrylate]. Journal of Applied Polymer Science, 2012, 125, 3537-3544.	2.6	35
67	Functional nanonetwork-structured polymers with inbuilt poly(acrylic acid) linings for enhanced adsorption. Polymer Chemistry, 2017, 8, 4771-4775.	3.9	35
68	Structure and adsorption properties of activated carbon aerogels. Journal of Applied Polymer Science, 2006, 99, 2263-2267.	2.6	33
69	In-situ preparation of porous carbon nanosheets loaded with metal chalcogenides for a superior oxygen evolution reaction. Carbon, 2019, 149, 144-151.	10.3	32
70	A facile approach for tailoring carbon frameworks from microporous to nonporous for nanocarbons. Journal of Materials Chemistry A, 2013, 1, 5001.	10.3	31
71	Powdery polymer and carbon aerogels with high surface areas for high-performance solid phase microextraction coatings. Nanoscale, 2017, 9, 5545-5550.	5.6	31
72	High-performance organic electrolyte supercapacitors based on intrinsically powdery carbon aerogels. Chinese Chemical Letters, 2018, 29, 633-636.	9.0	30

#	Article	IF	CITATIONS
73	Synthesis of SiO _{<i>x</i>} /C Composite Nanosheets As High-Rate and Stable Anode Materials for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3562-3568.	5.1	30
74	Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels. Journal of Porous Materials, 2008, 15, 29-34.	2.6	29
75	Ultrahigh surface area hierarchical porous carbons based on natural well-defined macropores in sisal fibers. Journal of Materials Chemistry, 2011, 21, 14424.	6.7	29
76	Nanopores array of ordered mesoporous carbons determine Pt's activity towards alcohol electrooxidation. Journal of Materials Chemistry, 2011, 21, 16357.	6.7	29
77	Ammonia-Assisted Semicarbonization: A Simple Method to Introduce Micropores without Damaging a 3D Mesoporous Carbon Nanonetwork Structure. Langmuir, 2014, 30, 9183-9189.	3.5	29
78	Novel hollow and yolkâ€"shell structured periodic mesoporous polymer nanoparticles. Chemical Communications, 2016, 52, 2489-2492.	4.1	29
79	Engineering 3D Aligned Nanofibers for Regulation of Cell Growth Behavior. Macromolecular Materials and Engineering, 2017, 302, 1600448.	3.6	29
80	A hypercrosslinking-induced self-assembly strategy for preparation of advanced hierarchical porous polymers with customizable functional components. Chemical Communications, 2017, 53, 5294-5297.	4.1	29
81	Pore morphology: a vital factor in determining electrochemical properties of electrical double layer capacitors. Chemical Communications, 2013, 49, 9998.	4.1	28
82	Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fibre. Nanoscale, 2015, 7, 11720-11726.	5.6	28
83	A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chemical Communications, 2017, 53, 6764-6767.	4.1	28
84	Hollow carbon nanospheres with high surface areas for fast, broad-spectrum and sensitive adsorption of pollutants. Nanoscale, 2018, 10, 5725-5730.	5.6	27
85	Fabrication and Physical Properties of Organic and Carbon Aerogel Derived from Phenol and Furfural. Journal of Porous Materials, 2005, 12, 311-316.	2.6	26
86	Monodisperse microporous carbon nanospheres: An efficient and stable solid phase microextraction coating material. Analytica Chimica Acta, 2015, 884, 44-51.	5.4	26
87	Facile, general and template-free construction of monodisperse yolk–shell metal@carbon nanospheres. Chemical Communications, 2017, 53, 12136-12139.	4.1	25
88	Polyethylene glycol-induced self-assembly to synthesize an ordered mesoporous polymer with a two-dimensional hexagonal structure. Journal of Materials Chemistry A, 2013, 1, 3061.	10.3	24
89	Dendriteâ€Free and Longâ€Cycling Lithium Metal Battery Enabled by Ultrathin, 2D Shieldâ€Defensive, and Single Lithiumâ€on Conducting Polymeric Membrane. Advanced Materials, 2022, 34, .	21.0	21
90	Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chemical Communications, 2016, 52, 803-806.	4.1	20

#	Article	IF	Citations
91	Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization. Journal of Chromatography A, 2016, 1427, 22-28.	3.7	19
92	Synthesis of antibacterial polymers from 2-dimethylamino ethyl methacrylate quaternized by dimethyl sulfate. Polymer Journal, 2010, 42, 766-771.	2.7	17
93	Synthesis and adsorption properties of highly monodisperse hollow microporous polystyrene nanospheres. RSC Advances, 2014, 4, 26166.	3.6	17
94	A new supramolecular binder strongly enhancing the electrochemistry performance for lithium–sulfur batteries. Chemical Communications, 2019, 55, 13924-13927.	4.1	17
95	Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks for antibacterial application. Chemical Communications, 2017, 53, 9777-9780.	4.1	16
96	Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery. Nanoscale Research Letters, 2017, 12, 617.	5.7	16
97	Lightweight, Highly Permeable, Biocompatible, and Antiadhesive Composite Meshes for Intraperitoneal Repairs. Macromolecular Bioscience, 2018, 18, e1800067.	4.1	16
98	3D porous carbon networks with highly dispersed SiO _x by molecular-scale engineering toward stable lithium metal anodes. Chemical Communications, 2019, 55, 6034-6037.	4.1	16
99	A versatile bottom-up interface self-assembly strategy to hairy nanoparticle-based 2D monolayered composite and functional nanosheets. Chemical Communications, 2019, 55, 10241-10244.	4.1	15
100	Porous structure and liquidâ€phase adsorption properties of activated carbon aerogels. Journal of Applied Polymer Science, 2007, 106, 2775-2779.	2.6	14
101	Activation-free fabrication of high-surface-area porous carbon nanosheets from conjugated copolymers. Chemical Communications, 2018, 54, 11431-11434.	4.1	14
102	An interfacial crosslinking strategy to fabricate an ultrathin two-dimensional composite of silicon oxycarbide-enwrapped silicon nanoparticles for high-performance lithium storage. Journal of Materials Chemistry A, 2019, 7, 22950-22957.	10.3	14
103	CoS ₂ Nanoparticles Embedded in Covalent Organic Polymers as Efficient Electrocatalyst for Oxygen Evolution Reaction with Ultralow Overpotential. Chemistry - an Asian Journal, 2021, 16, 3102-3106.	3.3	14
104	Multi-dimensional construction of a novel active yolk@conductive shell nanofiber web as a self-standing anode for high-performance lithium-ion batteries. Nanoscale, 2015, 7, 19930-19934.	5.6	13
105	Fabrication and electrochemical performance of novel hollow microporous carbon nanospheres. RSC Advances, 2016, 6, 49661-49667.	3.6	13
106	Fabrication of Porous Functional Nanonetwork-Structured Polymers with Enhanced Adsorption Performance from Well-Defined Molecular Brush Building Blocks. Chemistry of Materials, 2018, 30, 8624-8629.	6.7	13
107	Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in Lithium–Sulfur Batteries. Macromolecules, 2021, 54, 2992-2999.	4.8	13
108	Fabrication of Porous Nanonetwork-Structured Carbons from Well-Defined Cylindrical Molecular Bottlebrushes. ACS Applied Materials & Defined Sciences, 2019, 11, 18763-18769.	8.0	11

#	Article	IF	CITATIONS
109	Construction of 3D carbon networks with well-dispersed SiO _x nanodomains from gelable building blocks for lithium-ion batteries. RSC Advances, 2019, 9, 9086-9092.	3.6	11
110	Morphology-Persistent Carbonization of Self-Assembled Block Copolymers for Multifunctional Coupled Two-Dimensional Porous Carbon Hybrids. Chemistry of Materials, 2020, 32, 8971-8980.	6.7	11
111	Controllable Preparation of Core–Shell Composites and Their Templated Hollow Carbons Based on a Well-Orchestrated Molecular Bridge-Linked Organic–Inorganic Hybrid Interface. ACS Applied Materials & Interfaces, 2021, 13, 26404-26410.	8.0	9
112	Molecular Engineering toward Highâ€Crystallinity Yet Highâ€Surfaceâ€Area Porous Carbon Nanosheets for Enhanced Electrocatalytic Oxygen Reduction. Advanced Science, 2022, 9, e2103477.	11.2	9
113	Adsorption of theophylline from aqueous solution on organic aerogels and carbon aerogels. Journal of Porous Materials, 2009, 16, 507-512.	2.6	6
114	Fabrication of three-dimensionally nanostructured carbon materials with functional tube-in-tube network units for enhanced electrochemical performances. Carbon, 2019, 151, 103-108.	10.3	6
115	Preparation and characterization of petroleumâ€pitchâ€based carbon aerogels. Journal of Applied Polymer Science, 2009, 112, 309-314.	2.6	5
116	Nitrogenâ€Doped Nanocarbons Derived from Tetrazine Crossâ€Linked Poly(4 yanostyrene)â€Silica Hybrids. Macromolecular Chemistry and Physics, 2017, 218, 1600524.	2.2	5
117	Fabrication of powdery polymer aerogel as the stationary phase for high-resolution gas chromatographic separation. Talanta, 2018, 186, 445-451.	5.5	4
118	Graphene Oxide-Supported Two-Dimensional Microporous Polystyrene. Materials Research Society Symposia Proceedings, 2013, 1549, 25-29.	0.1	3
119	Antibacterial activity of polymeric quaternary ammonium compounds tuned by incorporating hydrophilic co-monomer. Chemical Research in Chinese Universities, 2015, 31, 160-166.	2.6	3
120	A stepwise crosslinking strategy toward lamellar carbon frameworks with covalently connected alternate layers of porous carbon nanosheets and porous carbon spacers. Chemical Communications, 2018, 54, 10332-10335.	4.1	3
121	Selfâ€Supporting Electrocatalyst Film Based on Selfâ€Assembly of Heterogeneous Bottlebrush and Polyoxometalate for Efficient Hydrogen Evolution Reaction. Macromolecular Rapid Communications, 2022, 43, e2100915.	3.9	3
122	Easily-injectable shear-thinning hydrogel provides long-lasting submucosal barrier for gastrointestinal endoscopic surgery. Bioactive Materials, 2022, 15, 44-52.	15.6	3
123	Synthesis of novel hierarchical porous polymers with a nanowire-interconnected network structure from core-shell polymer nanoobjects. Science China Chemistry, 2017, 60, 1084-1089.	8.2	2
124	A versatile sea anemone-inspired strategy toward 2D hybrid porous carbons from functional molecular brushes. Chemical Communications, 2021, 57, 1446-1449.	4.1	2
125	Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking. , 0, .		1
126	Reactive Template-Induced Self-Assembly to Ordered Mesoporous Polymer and Carbon. Materials Research Society Symposia Proceedings, 2013, 1549, 143-147.	0.1	0