
Richard N Kitsis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7849069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IDH2-mediated regulation of the biogenesis of the oxidative phosphorylation system. Science Advances, 2022, 8, eabl8716.	4.7	10
2	Modulating mitofusins to control mitochondrial function and signaling. Nature Communications, 2022, 13, .	5.8	31
3	Upâ€regulation of cofilinâ€1 in cell senescence associates with morphological change and p27 ^{kip1} â€mediated growth delay. Aging Cell, 2021, 20, e13288.	3.0	13
4	Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Science Translational Medicine, 2021, 13, .	5.8	46
5	Conversion of the death inhibitor ARC to a killer activates pancreatic β cell death in diabetes. Developmental Cell, 2021, 56, 747-760.e6.	3.1	8
6	Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms. Journal of Clinical Investigation, 2021, 131, .	3.9	84
7	Txnip C247S mutation protects the heart against acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2021, 155, 36-49.	0.9	11
8	Multiple Cell Death Programs Contribute to Myocardial Infarction. Circulation Research, 2021, 129, 397-399.	2.0	9
9	Loss of apoptosis repressor with caspase recruitment domain (ARC) worsens high fat diet-induced hyperglycemia in mice. Journal of Endocrinology, 2021, 251, 125-135.	1.2	0
10	Editorial: Mitochondrial Dysfunction and Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 645986.	1.1	6
11	OncomiR miR-182-5p Enhances Radiosensitivity by Inhibiting the Radiation-Induced Antioxidant Effect through SESN2 in Head and Neck Cancer. Antioxidants, 2021, 10, 1808.	2.2	12
12	Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the <scp>Translational Research Committee</scp> of the <scp>Heart Failure Association</scp> (<scp>HFA</scp>) of the <scp>European Society of Cardiology</scp> (<scp>ESC</scp>). European Journal of Heart Failure, 2020, 22, 2272-2289.	2.9	92
13	ATG16L1 autophagy pathway regulates BAX protein levels and programmed cell death. Journal of Biological Chemistry, 2020, 295, 15045-15053.	1.6	6
14	A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. Nature Cancer, 2020, 1, 315-328.	5.7	78
15	Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiological Reviews, 2019, 99, 1765-1817.	13.1	550
16	Unlocking the Secrets of Mitochondria in the Cardiovascular System. Circulation, 2019, 140, 1205-1216.	1.6	91
17	Small-molecule allosteric inhibitors of BAX. Nature Chemical Biology, 2019, 15, 322-330.	3.9	65
18	MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science, 2018, 360, 336-341.	6.0	187

RICHARD N KITSIS

#	Article	IF	CITATIONS
19	PDCD5 says no to NO. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4535-4537.	3.3	1
20	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
21	RCAN1–Calcineurin Axis and the Set-Point for Myocardial Damage During Ischemia-Reperfusion. Circulation Research, 2018, 122, 796-798.	2.0	18
22	Ryanodine Receptor Calcium Leak in Circulating B-Lymphocytes as a Biomarker in Heart Failure. Circulation, 2018, 138, 1144-1154.	1.6	36
23	An Akt3 Splice Variant Lacking the Serine 472 Phosphorylation Site Promotes Apoptosis and Suppresses Mammary Tumorigenesis. Cancer Research, 2018, 78, 103-114.	0.4	13
24	Heart Disease and Cancer. Circulation, 2018, 138, 692-695.	1.6	37
25	Abstract 117: Regulation of Cardiac Mitochondrial Function by Chaperone Mediated Autophagy. Circulation Research, 2018, 123, .	2.0	1
26	A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nature Communications, 2017, 8, 14050.	5.8	154
27	A myeloid tumor suppressor role for NOL3. Journal of Experimental Medicine, 2017, 214, 753-771.	4.2	8
28	A New Role for the ER Unfolded Protein Response Mediator ATF6. Circulation Research, 2017, 120, 759-761.	2.0	10
29	Beyond Mitophagy. Circulation Research, 2017, 120, 1234-1236.	2.0	17
30	Troponin Release Following Brief Myocardial Ischemia. JACC Basic To Translational Science, 2017, 2, 118-121.	1.9	16
31	Death Receptor Signaling in the Heart. Circulation, 2017, 136, 743-746.	1.6	15
32	Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nature Communications, 2017, 8, 578.	5.8	32
33	Apoptosis Repressor With Caspase Recruitment Domain Ameliorates Amyloid-Induced β-Cell Apoptosis and JNK Pathway Activation. Diabetes, 2017, 66, 2636-2645.	0.3	17
34	ARC is essential for maintaining pancreatic islet structure and Î ² -cell viability during type 2 diabetes. Scientific Reports, 2017, 7, 7019.	1.6	5
35	Grounding Cardio-Oncology in Basic and Clinical Science. Circulation, 2017, 136, 3-5.	1.6	32
36	Does Autophagy Mediate Cardiac Myocyte Death During Stress?. Circulation Research, 2016, 119, 893-895.	2.0	33

RICHARD N KITSIS

#	Article	lF	CITATIONS
37	Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature, 2016, 540, 74-79.	13.7	190
38	Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metabolism, 2016, 23, 1078-1092.	7.2	302
39	Evaluating mitochondrial autophagy in the mouse heart. Journal of Molecular and Cellular Cardiology, 2016, 92, 134-139.	0.9	32
40	The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth. PLoS ONE, 2015, 10, e0145792.	1.1	4
41	Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circulation Research, 2015, 117, 346-351.	2.0	172
42	MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Molecular Cell, 2015, 59, 719-731.	4.5	170
43	Recent progress in research on molecular mechanisms of autophagy in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H259-H268.	1.5	30
44	The Mitochondrial Dynamism-Mitophagy-Cell Death Interactome. Circulation Research, 2015, 116, 167-182.	2.0	156
45	The Apoptosis Inhibitor ARC Alleviates the ER Stress Response to Promote β-Cell Survival. Diabetes, 2013, 62, 183-193.	0.3	27
46	Tbx6 is a determinant of cardiac and neural cell fate decisions in multipotent P19CL6 cells. Differentiation, 2012, 84, 176-184.	1.0	6
47	Bax regulates primary necrosis through mitochondrial dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6566-6571.	3.3	250
48	Programmed Necrosis, Not Apoptosis, in the Heart. Circulation Research, 2011, 108, 1017-1036.	2.0	237
49	Apoptosis Inhibitor ARC Promotes Breast Tumorigenesis, Metastasis, and Chemoresistance. Cancer Research, 2011, 71, 7705-7715.	0.4	53
50	A Critical Role for the Protein Apoptosis Repressor With Caspase Recruitment Domain in Hypoxia-Induced Pulmonary Hypertension. Circulation, 2011, 124, 2533-2542.	1.6	34
51	Apoptotic cell death "Nixed" by an ER-mitochondrial necrotic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9031-9032.	3.3	46
52	Cell Death in the Pathogenesis of Heart Disease: Mechanisms and Significance. Annual Review of Physiology, 2010, 72, 19-44.	5.6	638
53	Introduction—cell death in heart failure. Heart Failure Reviews, 2008, 13, 107-109.	1.7	15
54	Abstract 4378: Apoptosis in Heart Failure Predominantly Involves Non-Myocytes. Circulation, 2008, 118,	1.6	0

RICHARD N KITSIS

#	Article	IF	CITATIONS
55	The Role of Apoptosis in Myocardial Infarction and Heart Failure. , 2005, , 483-519.		1
56	Apoptosis and the heart: a decade of progress. Journal of Molecular and Cellular Cardiology, 2005, 38, 1-2.	0.9	40
57	Inhibition of Both the Extrinsic and Intrinsic Death Pathways through Nonhomotypic Death-Fold Interactions. Molecular Cell, 2004, 15, 901-912.	4.5	166
58	Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H456-H463.	1.5	187
59	A mechanistic role for cardiac myocyte apoptosis in heart failure. Journal of Clinical Investigation, 2003, 111, 1497-1504.	3.9	639
60	Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. American Journal of Physiology - Cell Physiology, 2001, 280, C823-C835.	2.1	111
61	Fas-FasL interaction modulates nitric oxide production in Trypanosoma cruzi-infected mice. Immunology, 2001, 103, 122-129.	2.0	38
62	Seeing death in the living. Nature Medicine, 2001, 7, 1277-1278.	15.2	24
63	Calcineurin-Mediated Hypertrophy Protects Cardiomyocytes From Apoptosis In Vitro and In Vivo. Circulation Research, 2000, 86, 255-263.	2.0	203
64	Akt Promotes Survival of Cardiomyocytes In Vitro and Protects Against Ischemia-Reperfusion Injury in Mouse Heart. Circulation, 2000, 101, 660-667.	1.6	783
65	β-Adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H961-H968.	1.5	93
66	Functional significance of alterations in cardiac contractile protein isoforms. Clinical Cardiology, 1996, 19, 9-18.	0.7	12
67	Cell Death in the Cardiovascular System. , 0, , 295-312.		0
68	Cardiac Myosin Heavy Chain Reporter Mice to Study Heart Development and Disease. Circulation Research, 0, , .	2.0	0