Yifang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7848376/publications.pdf

Version: 2024-02-01

331259 433756 1,665 32 21 31 h-index citations g-index papers 32 32 32 2589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 47, 482-490.	9.5	26
2	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chemical Engineering Journal, 2021, 404, 126508.	6.6	21
3	Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendriteâ€Free Alkaliâ€Metal Battery. Advanced Materials, 2021, 33, e2101745.	11.1	32
4	Antiâ€Corrosive and Znâ€Ionâ€Regulating Composite Interlayer Enabling Longâ€Life Zn Metal Anodes. Advanced Functional Materials, 2021, 31, 2104361.	7.8	135
5	Mechanistic Insights into Fast Charging and Discharging of the Sodium Metal Battery Anode: A Comparison with Lithium. Journal of the American Chemical Society, 2021, 143, 13929-13936.	6.6	46
6	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
7	Intrinsically high efficiency sodium metal anode. Science China Chemistry, 2020, 63, 1557-1562.	4.2	7
8	Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composites as advanced anodes for lithium-ion batteries. Nanoscale, 2020, 12, 12623-12631.	2.8	44
9	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie, 2020, 132, 7871-7876.	1.6	4
10	Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling. Advanced Functional Materials, 2020, 30, 1907579.	7.8	49
11	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2020, 3, 892-899.	2.4	22
12	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie - International Edition, 2020, 59, 7797-7802.	7.2	57
13	A Facile Carbon Quantum Dotâ€Modified Reduction Approach Towards Tunable Sb@CQDs Nanoparticles for High Performance Sodium Storage. Batteries and Supercaps, 2020, 3, 463-469.	2.4	20
14	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Materials, 2019, 18, 366-374.	9.5	101
15	Na″on Batteries: A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodium″on Batteries (Adv. Sci. 16/2019). Advanced Science, 2019, 6, 1970098.	5.6	4
16	Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases. , 2019, 1, 254-259.		23
17	Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries. Journal of Electroanalytical Chemistry, 2019, 853, 113505.	1.9	18
18	A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€Ion Batteries. Advanced Science, 2019, 6, 1900162.	5.6	90

#	Article	IF	CITATIONS
19	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160.	5.2	90
20	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799.	5.2	30
21	S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18286-18292.	5.2	67
22	Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. Journal of Physical Chemistry C, 2018, 122, 21462-21467.	1.5	45
23	Nitrogen-Doped Yolk–Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3624-3633.	4.0	244
24	Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Materials, 2017, 8, 28-34.	9.5	107
25	Rational design of multi-shelled CoO/Co ₉ S ₈ hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456.	5.2	91
26	Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-lon Batteries. Nanoscale Research Letters, 2016, 11, 549.	3.1	17
27	Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors. Science China Materials, 2016, 59, 247-253.	3.5	25
28	Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2016, 683, 178-185.	2.8	21
29	Nanorod-Nanoflake Interconnected LiMnPO ₄ ·Li ₃ V ₂ (PO ₄) ₃ /C Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27632-27641.	4.0	44
30	Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries.	4.0	43
31	Reduced graphene oxide modified V2O3 with enhanced performance for lithium-ion battery. Materials Letters, 2014, 137, 174-177.	1.3	30
32	Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. Journal of Power Sources, 2014, 272, 107-112.	4.0	101