Yifang Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7848376/yifang-zhang-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32	1,154	19	32
papers	citations	h-index	g-index
32 ext. papers	1,398 ext. citations	11.9 avg, IF	4.71 L-index

#	Paper	IF	Citations
32	Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. <i>Energy Storage Materials</i> , 2022 , 47, 482-490	19.4	4
31	Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendrite-Free Alkali-Metal Battery. <i>Advanced Materials</i> , 2021 , 33, e2101745	24	10
30	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. <i>Chemical Engineering Journal</i> , 2021 , 404, 126508	14.7	11
29	Anti-Corrosive and Zn-Ion-Regulating Composite Interlayer Enabling Long-Life Zn Metal Anodes. <i>Advanced Functional Materials</i> , 2021 , 31, 2104361	15.6	38
28	Mechanistic Insights into Fast Charging and Discharging of the Sodium Metal Battery Anode: A Comparison with Lithium. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13929-13936	16.4	11
27	Revisiting lithium metal anodes from a dynamic and realistic perspective. <i>EnergyChem</i> , 2021 , 3, 100063	36.9	4
26	Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composites as advanced anodes for lithium-ion batteries. <i>Nanoscale</i> , 2020 , 12, 12623-	172731	17
25	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. <i>Angewandte Chemie</i> , 2020 , 132, 7871-7876	3.6	4
24	Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling. <i>Advanced Functional Materials</i> , 2020 , 30, 1907579	15.6	33
23	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithium-Sulfur Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 892-899	5.6	11
22	Intrinsically high efficiency sodium metal anode. Science China Chemistry, 2020, 63, 1557-1562	7.9	6
21	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie - International Edition, 2020 , 59, 7797-7802	16.4	36
20	A Facile Carbon Quantum Dot-Modified Reduction Approach Towards Tunable Sb@CQDs Nanoparticles for High Performance Sodium Storage. <i>Batteries and Supercaps</i> , 2020 , 3, 463-469	5.6	15
19	A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binder-Free Anodes for Sodium-Ion Batteries. <i>Advanced Science</i> , 2019 , 6, 1900162	13.6	58
18	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. <i>Energy Storage Materials</i> , 2019 , 18, 366-374	19.4	78
17	Na-Ion Batteries: A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binder-Free Anodes for Sodium-Ion Batteries (Adv. Sci. 16/2019). <i>Advanced Science</i> , 2019 , 6, 1970098	13.6	3
16	Formation and Evolution of Lithium Metal Anodellarbonate Electrolyte Interphases 2019 , 1, 254-259		20

LIST OF PUBLICATIONS

Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 853, 113505	4.1	8
Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9153-9160	13	76
Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6792-6799	13	26
S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18286-18292	13	51
Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 21462-21467	3.8	34
Nitrogen-Doped Yolk-Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. <i>ACS Applied Materials & Date of Samp; Interfaces</i> , 2017 , 9, 3624-3633	9.5	197
Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. <i>Energy Storage Materials</i> , 2017 , 8, 28-34	19.4	77
Rational design of multi-shelled CoO/Co9S8 hollow microspheres for high-performance hybrid supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18448-18456	13	78
Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	35
Controllable Preparation of VO/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries. <i>Nanoscale Research Letters</i> , 2016 , 11, 549	5	13
Multi-shelled ⊞e2O3 microspheres for high-rate supercapacitors. <i>Science China Materials</i> , 2016 , 59, 247-253	7.1	22
Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2016 , 683, 178-185	5.7	20
Nanorod-Nanoflake Interconnected LiMnPOILiV(PO)/C Composite for High-Rate and Long-Life Lithium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 27632-27641	9.5	38
Reduced graphene oxide modified V2O3 with enhanced performance for lithium-ion battery. <i>Materials Letters</i> , 2014 , 137, 174-177	3.3	26
Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. <i>Journal of Power Sources</i> , 2014 , 272, 107-112	8.9	94
	of Electroanalytical Chemistry, 2019, 853, 113505 Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160 Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799 S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18286-18292 Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. Journal of Physical Chemistry C, 2018, 122, 21462-21467 Nitrogen-Doped Yolk-Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3624-3633 Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Materials, 2017, 8, 28-34 Rational design of multi-shelled CoO/Co9S8 hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456 Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Description of Nordicaphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries. Nanoscale Research Letters, 2016, 11, 549 Multi-shelled E-2O3 microspheres for high-rate supercapacitors. Science China Materials, 2016, 59, 247-253 Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2016, 683, 178-185 Nanorod-Nanoflake Interconnected LiMnPOLLiV(PO)/C Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Description of Policy Polycon Composite for Lithium-Ion battery. Materials Letters, 2014, 137, 174-177 Facile synthesis of nanorod-assembled multi-shelled Co3O4 h	### Of Electroanalytical Chemistry, 2019, 853, 113505 Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160 Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799 13 S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18286-18292 13 Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. Journal of Physical Chemistry C, 2018, 122, 21462-21467 Nitrogen-Doped Yolk-Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2017, 9, 3624-3633 95 Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Materials, 2017, 8, 28-34 Rational design of multi-shelled CoO/Co9S8 hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456 13 Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2016, 8, 17303-11 Controllable Preparation of VO/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries. Nanoscale Research Letters, 2016, 11, 549 Multi-shelled IFe2O3 microspheres for high-rate supercapacitors. Science China Materials, 2016, 59, 247-253 Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2016, 683, 178-185 7.1 Reduced graphene oxide modified V2O3 with enhanced performance for High-Rate and Long-Life Lithium-Ion Batteries of nanorod-assembled multi-shelled Co3O4 hollow microspheres for