Yifang Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/7848376/yifang-zhang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32 1,154 19 32 g-index

32 1,398 11.9 4.71 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
32	Nitrogen-Doped Yolk-Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. <i>ACS Applied Materials & Documents amp; Interfaces</i> , 2017 , 9, 3624-3633	9.5	197
31	Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. <i>Journal of Power Sources</i> , 2014 , 272, 107-112	8.9	94
30	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. <i>Energy Storage Materials</i> , 2019 , 18, 366-374	19.4	78
29	Rational design of multi-shelled CoO/Co9S8 hollow microspheres for high-performance hybrid supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18448-18456	13	78
28	Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. <i>Energy Storage Materials</i> , 2017 , 8, 28-34	19.4	77
27	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9153-9160	13	76
26	A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binder-Free Anodes for Sodium-Ion Batteries. <i>Advanced Science</i> , 2019 , 6, 1900162	13.6	58
25	S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18286-18292	13	51
24	Nanorod-Nanoflake Interconnected LiMnPOILiV(PO)/C Composite for High-Rate and Long-Life Lithium-Ion Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 27632-27641	9.5	38
23	Anti-Corrosive and Zn-Ion-Regulating Composite Interlayer Enabling Long-Life Zn Metal Anodes. <i>Advanced Functional Materials</i> , 2021 , 31, 2104361	15.6	38
22	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7797-7802	16.4	36
21	Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	35
20	Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 21462-21467	3.8	34
19	Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling. <i>Advanced Functional Materials</i> , 2020 , 30, 1907579	15.6	33
18	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6792-6799	13	26
17	Reduced graphene oxide modified V2O3 with enhanced performance for lithium-ion battery. <i>Materials Letters</i> , 2014 , 137, 174-177	3.3	26
16	Multi-shelled ⊞e2O3 microspheres for high-rate supercapacitors. <i>Science China Materials</i> , 2016 , 59, 247-253	7.1	22

15	Formation and Evolution of Lithium Metal Anodellarbonate Electrolyte Interphases 2019 , 1, 254-259		20
14	Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2016 , 683, 178-185	5.7	20
13	Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composites as advanced anodes for lithium-ion batteries. <i>Nanoscale</i> , 2020 , 12, 12623-	1⁄2631	17
12	A Facile Carbon Quantum Dot-Modified Reduction Approach Towards Tunable Sb@CQDs Nanoparticles for High Performance Sodium Storage. <i>Batteries and Supercaps</i> , 2020 , 3, 463-469	5.6	15
11	Controllable Preparation of VO/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries. <i>Nanoscale Research Letters</i> , 2016 , 11, 549	5	13
10	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithium-Sulfur Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 892-899	5.6	11
9	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. <i>Chemical Engineering Journal</i> , 2021 , 404, 126508	14.7	11
8	Mechanistic Insights into Fast Charging and Discharging of the Sodium Metal Battery Anode: A Comparison with Lithium. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13929-13936	16.4	11
7	Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendrite-Free Alkali-Metal Battery. <i>Advanced Materials</i> , 2021 , 33, e2101745	24	10
6	Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 853, 113505	4.1	8
5	Intrinsically high efficiency sodium metal anode. Science China Chemistry, 2020, 63, 1557-1562	7.9	6
4	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. <i>Angewandte Chemie</i> , 2020 , 132, 7871-7876	3.6	4
3	Revisiting lithium metal anodes from a dynamic and realistic perspective. <i>EnergyChem</i> , 2021 , 3, 100063	36.9	4
2	Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. <i>Energy Storage Materials</i> , 2022 , 47, 482-490	19.4	4
1	Na-Ion Batteries: A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binder-Free Anodes for Sodium-Ion Batteries (Adv. Sci. 16/2019). <i>Advanced Science</i> , 2019 , 6, 1970098	13.6	3