Liling Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/784832/publications.pdf

Version: 2024-02-01

331538 265120 2,031 42 68 21 h-index citations g-index papers 69 69 69 3469 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 53.	3.5	328
2	The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. Journal of Experimental and Clinical Cancer Research, 2019, 38, 250.	3.5	200
3	Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Progress in Biophysics and Molecular Biology, 2010, 102, 122-128.	1.4	176
4	Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nature Communications, 2019, 10, 1693.	5.8	119
5	The role of coldâ€inducible <scp>RNA</scp> binding protein in cell stress response. International Journal of Cancer, 2017, 141, 2164-2173.	2.3	91
6	Salvianolic Acids: Potential Source of Natural Drugs for the Treatment of Fibrosis Disease and Cancer. Frontiers in Pharmacology, 2019, 10, 97.	1.6	83
7	The Application of IncRNAs in Cancer Treatment and Diagnosis. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 292-301.	0.8	80
8	SPARC in Tumor Pathophysiology and as a Potential Therapeutic Target. Current Pharmaceutical Design, 2014, 20, 6182-6190.	0.9	69
9	RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes. Molecular Cell, 2016, 62, 875-889.	4.5	66
10	Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and p16/pRB pathway. International Journal of Biochemistry and Cell Biology, 2017, 90, 29-37.	1.2	44
11	Mesenchymal Stem Cells Differentiation on Hierarchically Micro/Nanoâ€5tructured Titanium Substrates. Advanced Engineering Materials, 2012, 14, B216.	1.6	36
12	Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs). Medical Oncology, 2017, 34, 24.	1.2	35
13	Competing endogenous RNAs in lung cancer. Cancer Biology and Medicine, 2021, 18, 1-20.	1.4	32
14	Effect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells. Cell Biology International, 2011, 35, 99-104.	1.4	30
15	Aberrant and alternative splicing in skeletal system disease. Gene, 2013, 528, 21-26.	1.0	29
16	Calreticulin regulates TGF- \hat{l}^21 -induced epithelial mesenchymal transition through modulating Smad signaling and calcium signaling. International Journal of Biochemistry and Cell Biology, 2017, 90, 103-113.	1.2	29
17	Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. Journal of Cancer, 2018, 9, 4018-4028.	1.2	29
18	MicroRNA 320, an Anti-Oncogene Target miRNA for Cancer Therapy. Biomedicines, 2021, 9, 591.	1.4	27

#	Article	IF	CITATIONS
19	Substrate Stiffness Drives Epithelial to Mesenchymal Transition and Proliferation through the NEAT1-Wnt/ \hat{l}^2 -Catenin Pathway in Liver Cancer. International Journal of Molecular Sciences, 2021, 22, 12066.	1.8	27
20	Function of TREM1 and TREM2 in Liver-Related Diseases. Cells, 2020, 9, 2626.	1.8	26
21	Biophysical basis underlying dynamic Lck activation visualized by ZapLck FRET biosensor. Science Advances, 2019, 5, eaau2001.	4.7	25
22	Targeting BRD9 for Cancer Treatment: A New Strategy. OncoTargets and Therapy, 2020, Volume 13, 13191-13200.	1.0	24
23	Bcl-2 Family Proteins Regulate Apoptosis and Epithelial to Mesenchymal Transition by Calcium Signals. Current Pharmaceutical Design, 2016, 22, 4700-4704.	0.9	24
24	CRIM1, a newfound cancer-related player, regulates the adhesion and migration of lung cancer cells. Growth Factors, 2015, 33, 384-392.	0.5	23
25	SPARC acts as a mediator of TGFâ€Î²1 in promoting epithelialâ€toâ€mesenchymal transition in A549 and H1299 lung cancer cells. BioFactors, 2018, 44, 453-464.	2.6	23
26	Nerve Growth Factor: A Potential Therapeutic Target for Lung Diseases. International Journal of Molecular Sciences, 2021, 22, 9112.	1.8	23
27	The mechanism of CIRP in inhibition of keratinocytes growth arrest and apoptosis following low dose UVB radiation. Molecular Carcinogenesis, 2017, 56, 1554-1569.	1.3	20
28	The Critical Roles of HSC70 in Physiological and Pathological Processes. Current Pharmaceutical Design, 2014, 20, 101-107.	0.9	20
29	Irreversible electroporation and apoptosis in human liver cancer cells induced by nanosecond electric pulses. Bioelectromagnetics, 2013, 34, 512-520.	0.9	19
30	MDM2 Increases Drug Resistance in Cancer Cells by Inducing EMT Independent of p53. Current Medicinal Chemistry, 2016, 23, 4529-4539.	1.2	16
31	Inducible RNAi system and its application in novel therapeutics. Critical Reviews in Biotechnology, 2016, 36, 630-638.	5.1	15
32	Application of conditionally replicating adenoviruses in tumor early diagnosis technology, gene-radiation therapy and chemotherapy. Applied Microbiology and Biotechnology, 2016, 100, 8325-8335.	1.7	14
33	hnRNP A1 promotes keratinocyte cell survival post UVB radiation through PI3K/Akt/mTOR pathway. Experimental Cell Research, 2018, 362, 394-399.	1.2	14
34	Apoptosis induction with electric pulses â€" A new approach to cancer therapy with drug free. Biochemical and Biophysical Research Communications, 2009, 390, 1098-1101.	1.0	13
35	BAF57/SMARCE1 Interacting with Splicing Factor SRSF1 Regulates Mechanical Stress-Induced Alternative Splicing of Cyclin D1. Genes, 2021, 12, 306.	1.0	13
36	Î ² -Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Gastroenterology, 2022, 163, 481-494.	0.6	13

#	Article	IF	Citations
37	Micropillarâ€based culture platform induces epithelial–mesenchymal transition in the alveolar epithelial cell line. Journal of Biomedical Materials Research - Part A, 2018, 106, 3165-3174.	2.1	12
38	Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells. OncoTargets and Therapy, 2021, Volume 14, 2531-2540.	1.0	11
39	The Involvement of Splicing Factor hn <scp>RNP</scp> A1 in <scp>UVB</scp> â€induced Alternative Splicing of hdm2. Photochemistry and Photobiology, 2016, 92, 318-324.	1.3	10
40	<p>Novel Alternatively Spliced Variants of Smad4 Expressed in TGF \hat{l}^2 -Induced EMT Regulating Proliferation and Migration of A549 Cells</p>. OncoTargets and Therapy, 2020, Volume 13, 2203-2213.	1.0	10
41	Engineering the Vasculature of Stem-Cell-Derived Liver Organoids. Biomolecules, 2021, 11, 966.	1.8	9
42	Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease. Current Stem Cell Research and Therapy, 2019, 14, 654-668.	0.6	9
43	Apoptosis induction effects of steep pulsed electric fields (SPEF) on human liver cancer cell SMMC-7721 in vitro. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16, 1302-1310.	1.8	8
44	Alternative Splicing of SMAD4 and Its Function in HaCaT Cells in Response to UVB Irradiation. Journal of Cancer, 2018, 9, 3177-3186.	1.2	8
45	CRIM1, the Antagonist of BMPs, is a Potential Risk Factor of Cancer. Current Cancer Drug Targets, 2014, 14, 652-658.	0.8	8
46	The structure-function relationships of insulin-like growth factor 1 Ec in C2C12 cells. Cell Adhesion and Migration, 2018, 12, 47-55.	1.1	7
47	The Mechanism of <scp>CIRP</scp> in Regulation of <scp>STAT</scp> 3 Phosphorylation and Bagâ€1/S Expression Upon <scp>UVB</scp> Radiation. Photochemistry and Photobiology, 2018, 94, 1234-1239.	1.3	7
48	Examination of alternate codon bias solutions for expression and purification of recombinant mechanoâ€growth factor in <i>Escherichia coli</i> . Biotechnology and Applied Biochemistry, 2015, 62, 690-698.	1.4	6
49	Splicing factor-modulated generation of mechano growth factor regulates physiological processes in osteoblasts under mechanical stimuli. Cell Adhesion and Migration, 2019, 13, 321-330.	1.1	6
50	Estradiol shows anti-skin cancer activities through decreasing MDM2 expression. Oncotarget, 2017, 8, 8459-8474.	0.8	6
51	RNA Binding Motif Protein 3 Promotes Cell Metastasis and Epithelial–Mesenchymal Transition Through STAT3 Signaling Pathway in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 2022, Volume 9, 405-422.	1.8	6
52	Characterizing the role of mechanical signals in gene regulatory networks using Long SAGE. Gene, 2012, 501, 153-163.	1.0	5
53	A siRNA system based on HSP70 promoter results in controllable and powerful gene silencing by heatâ€induction. Biotechnology Progress, 2013, 29, 1289-1297.	1.3	5
54	Comparative Study of the Biological Responses to Conventional Pulse and High-Frequency Monopolar Pulse Bursts. IEEE Transactions on Plasma Science, 2017, 45, 2629-2638.	0.6	5

#	Article	IF	CITATIONS
55	MDM2 induces EMT via the Bâ€'Raf signaling pathway through 14â€'3â€'3. Oncology Reports, 2021, 46, .	1.2	5
56	Differences in the Effects of Duty Cycle and Interval on Cell Response Induced by High-Frequency Pulses Under Different Pulse Durations. IEEE Transactions on Plasma Science, 2016, 44, 2097-2110.	0.6	4
57	A novel inducible lentiviral system for multi-gene expression with human HSP70 promoter and tetracycline-induced promoter. Applied Microbiology and Biotechnology, 2017, 101, 3689-3702.	1.7	4
58	Loss of Apc Cooperates with Activated Oncogenes to Induce Liver Tumor Formation in Mice. American Journal of Pathology, 2021, 191, 930-946.	1.9	4
59	The Cell-Type Specificity and Endosomal Escape of Cell-Penetrating Peptides. Current Pharmaceutical Design, 2015, 21, 1351-1356.	0.9	4
60	PRDM14: A Potential Target for Cancer Therapy. Current Cancer Drug Targets, 2018, 18, 945-956.	0.8	4
61	Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch. Science Bulletin, 2006, 51, 2731-2736.	1.7	3
62	A novel conditional gene silencing method using a tumor-specific and heat-inducible siRNA system. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 761-770.	1.4	3
63	Multiple Roles of Fibroblast Growth Factor 21 in Metabolism. Current Pharmaceutical Design, 2015, 21, 3041-3050.	0.9	3
64	Chimeric Antigen Receptor T Cell Immunotherapy for Tumor: A Review of Patent Literatures. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 60-69.	0.8	1
65	Bioengineered 3D Scaffolds in Cancer Research: Focus on Epithelial to Mesenchymal Transition and Drug Screening. Current Pharmaceutical Design, 2017, 23, 1710-1720.	0.9	1
66	SNF5, a core subunit of SWI/SNF complex, regulates melanoma cancer cell growth, metastasis, and immune escape in response to matrix stiffness. Translational Oncology, 2022, 17, 101335.	1.7	1
67	SNF5 promotes cell proliferation and immune evasion in non-small cell lung cancer. Bioengineered, 2022, 13, 11530-11540.	1.4	1
68	Effects of Electric Pulses on Cancer Cells: Apoptosis Induction and Decrease of Mitochondrial Transmembrane Potential. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0