Xiaolong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7847277/publications.pdf

Version: 2024-02-01

289141 236833 3,322 40 25 40 h-index citations g-index papers 40 40 40 1988 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing. Journal of Magnesium and Alloys, 2023, 11, 1422-1439.	5. 5	20
2	Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures. Journal of Materials Science and Technology, 2022, 98, 244-247.	5.6	38
3	Microstructure evolution, enhanced aging kinetics, and mechanical properties of AA7075 alloy after friction extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142575.	2.6	10
4	Shear strain gradient in Cu/Nb nanolaminates: Strain accommodation and chemical mixing. Acta Materialia, 2022, 234, 117986.	3.8	12
5	Understanding the interaction of extension twinning and basal-plate precipitates in Mg-9Al using precession electron diffraction. Materialia, 2021, 15, 101044.	1.3	15
6	Significant disparity of non-basal dislocation activities in hot-rolled highly-textured Mg and Mg-3Al-1Zn alloy under tension. Acta Materialia, 2021, 207, 116691.	3.8	41
7	Exploring the origins of the indentation size effect at submicron scales. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
8	Solute segregation assisted nanocrystallization of a cold-rolled Mg–Ag alloy during annealing. Scripta Materialia, 2020, 177, 69-73.	2.6	43
9	Developing a high-strength Al–11Si alloy with improved ductility by combining ECAP and cryorolling. Materials Science & Developing A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138880.	2.6	29
10	Microstructure and deformation behavior of a novel steel rebar: Effect of the heterogeneous microstructure of soft ferrite and Hard bainite. Journal of Materials Research and Technology, 2020, 9, 12281-12292.	2.6	20
11	Grain-subdivision-dominated microstructure evolution in shear bands at high rates. Materials Research Letters, 2020, 8, 328-334.	4.1	13
12	Effect of basal precipitates on extension twinning and pyramidal slip: A micro-mechanical and electron microscopy study of a Mg–Al binary alloy. Acta Materialia, 2020, 189, 35-46.	3.8	36
13	Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Materialia, 2020, 186, 644-655.	3.8	146
14	Activation and suppression of ã€^cÂ+Âa〉 dislocations in a textured Mg–3Al–1Zn alloy. Scripta Materialia, 2020, 179, 49-54.	2.6	22
15	The effect of strain rate on the mechanisms of plastic flow and failure of an ECAE AZ31B magnesium alloy. Journal of Materials Science, 2019, 54, 13394-13419.	1.7	16
16	Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Materials and Design, 2019, 166, 107621.	3.3	97
17	<i>In-situ</i> observation of dislocation dynamics near heterostructured interfaces. Materials Research Letters, 2019, 7, 376-382.	4.1	100
18	Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: A comparative study to conventional aging. Acta Materialia, 2019, 172, 185-199.	3.8	99

#	Article	IF	CITATIONS
19	The formation mechanism of a novel interfacial phase with high thermal stability in a Mg-Gd-Y-Ag-Zr alloy. Acta Materialia, 2019, 162, 214-225.	3.8	74
20	Microstructural evolution and mechanical properties of Mg-9.8Gd-2.7Y-0.4Zr alloy produced by repetitive upsetting. Journal of Materials Science and Technology, 2018, 34, 1067-1075.	5.6	42
21	Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 113-118.	2.6	125
22	Interface affected zone for optimal strength and ductility in heterogeneous laminate. Materials Today, 2018, 21, 713-719.	8.3	357
23	Decreasing Bio-Degradation Rate of the Hydrothermal-Synthesizing Coated Mg Alloy via Pre-Solid-Solution Treatment. Materials, 2017, 10, 858.	1.3	8
24	Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction. Beilstein Journal of Nanotechnology, 2016, 7, 1501-1506.	1.5	1
25	Microstructure Characteristic and Electrochemical Corrosion Behavior of Surface Nano-crystallization Modified Carbon Steel. Journal of Iron and Steel Research International, 2016, 23, 1281-1289.	1.4	11
26	Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy. Progress in Natural Science: Materials International, 2016, 26, 590-599.	1.8	27
27	Nucleation of deformation twins in nanocrystalline fcc alloys. Philosophical Magazine, 2016, 96, 3790-3802.	0.7	4
28	Synergetic strengthening far beyond rule of mixtures in gradient structured aluminum rod. Scripta Materialia, 2016, 122, 106-109.	2.6	89
29	Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Materialia, 2016, 116, 43-52.	3.8	507
30	Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment. Materials and Design, 2016, 105, 89-95.	3.3	97
31	Effect of Ag on interfacial segregation in Mg–Gd–Y–(Ag)–Zr alloy. Acta Materialia, 2015, 95, 20-29.	3.8	95
32	Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 2015, 528, 539-543.	13.7	582
33	Enhanced mechanical properties in Cu–Zn alloys with a gradient structure by surface mechanical attrition treatment at cryogenic temperature. Materials Science & Diplement at Cryogenic temperature. Materials: Properties, Microstructure and Processing, 2015, 626, 144-149.	2.6	36
34	Alloying effect on grain-size dependent deformation twinning in nanocrystalline Cu–Zn alloys. Philosophical Magazine, 2015, 95, 301-310.	0.7	22
35	Finite element simulation and experimental investigation on homogeneity of Mg-9.8Gd-2.7Y-0.4Zr magnesium alloy processed by repeated-upsetting. Journal of Materials Processing Technology, 2015, 225, 310-317.	3.1	12
36	The role of shear strain on texture and microstructural gradients in low carbon steel processed by Surface Mechanical Attrition Treatment. Scripta Materialia, 2015, 108, 100-103.	2.6	60

3

XIAOLONG

#	Article	IF	CITATION
37	Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scripta Materialia, 2015, 103, 57-60.	2.6	195
38	Stacking-fault energy effect on zero-strain deformation twinning in nanocrystalline Cu–Zn alloys. Scripta Materialia, 2015, 109, 89-93.	2.6	26
39	Influence of gradient structure volume fraction on the mechanical properties of pure copper. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 280-285.	2.6	128
40	o A new metastable precipitate phase in Mg–Gd–Y–Zr alloy. Philosophical Magazine, 2014, 94, 2403-2409.	0.7	38