List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846986/publications.pdf Version: 2024-02-01

FARIO CADUEL

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
7	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
8	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
12	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
13	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
14	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
15	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
16	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
17	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
18	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898

#	Article	IF	CITATIONS
19	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext></mml:mrow>	mml æt æxt:	⊳≺n≋asktmsub
20	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
21	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
22	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
23	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
24	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
25	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
26	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
27	Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 084001.	1.4	512
28	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
29	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
30	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453
31	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
32	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
33	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
34	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
35	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
36	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338

#	Article	IF	CITATIONS
37	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
38	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
39	Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX, 2021, 13, 100658.	1.2	275
40	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
41	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
42	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
43	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
44	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
45	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
46	The CHORUS experiment to search for νμ → νÏ,, oscillation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 401, 7-44.	0.7	209
47	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
48	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
49	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	1.6	192
50	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
51	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
52	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
53	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	1.5	179
54	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179

#	Article	IF	CITATIONS
55	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
56	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
57	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
58	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
59	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
60	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
61	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
62	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
63	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
64	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
65	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
66	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
67	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
68	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
69	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
70	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
71	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
72	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107

#	Article	IF	CITATIONS
73	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
74	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
75	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
76	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
77	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
78	Protective effect of Capparis spinosa on chondrocytes. Life Sciences, 2005, 77, 2479-2488.	2.0	99
79	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
80	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
81	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
82	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
83	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
84	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
85	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
86	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
87	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
88	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
89	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
90	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87

#	Article	IF	CITATIONS
91	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
92	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	1.5	85
93	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
94	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
95	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
96	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
97	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
98	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
99	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
100	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
101	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
102	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
103	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
104	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
105	Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astroparticle Physics, 2019, 111, 100-110.	1.9	71
106	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
107	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
108	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69

#	Article	IF	CITATIONS
109	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
110	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
111	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
112	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
113	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
114	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
115	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
116	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
117	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
118	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
119	Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors. Journal of Geophysical Research: Solid Earth, 2015, 120, 7290-7307.	1.4	62
120	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	1.6	62
121	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
122	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
123	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
124	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
125	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96,	1.6	60
126	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60

#	Article	IF	CITATIONS
127	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
128	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
129	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
130	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	1.5	56
131	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
132	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
133	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
134	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
135	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
136	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85, .	1.6	48
137	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
138	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
139	Deep sea tests of a prototype of the KM3NeT digital optical module. European Physical Journal C, 2014, 74, 1.	1.4	46
140	The MU-RAY project: detector technology and first data from Mt. Vesuvius. Journal of Instrumentation, 2014, 9, C02029-C02029.	0.5	46
141	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
142	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
143	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46
144	Observation of Gravitational Waves from a Binary Black Hole Merger. , 2017, , 291-311.		45

#	Article	IF	CITATIONS
145	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
146	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
147	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	1.6	43
148	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
149	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	0.784314	4 rgβT /Overl
150	Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of human chondrocyte cultures. Journal of Ethnopharmacology, 2007, 111, 315-321.	2.0	40
151	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
152	Scaler mode technique for the ARGO-YBJ detector. Astroparticle Physics, 2008, 30, 85-95.	1.9	39
153	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
154	A search for νμ→νÏ,, oscillation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 424, 202-212.	1.5	38
155	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
156	Tracking with capillaries and liquid scintillator. Nuclear Physics, Section B, Proceedings Supplements, 1998, 61, 390-395.	0.5	36
157	The MU-RAY experiment. An application of SiPM technology to the understanding of volcanic phenomena. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 718, 134-137.	0.7	36
158	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817_Physical Review Letters_2019_122_061104</mml:math 	2.9	36
159	Testing gravitational theories using eccentric eclipsing detached binaries. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2371-2379.	1.6	35
160	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
161	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
162	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	2.9	35

#	Article	IF	CITATIONS
163	Search for l¼2l¼â†'l¼2l, oscillation using the l, decay modes into a single charged particle1This paper is dedicate the memory of Yasushi Ishii, a bright colleague and a good friend, whose loss has caused us great sorrow.1. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 434, 205-213.	ed to 1.5	34
164	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
165	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
166	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	2.9	32
167	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
168	The prototype detection unit of the KM3NeT detector. European Physical Journal C, 2016, 76, 1.	1.4	32
169	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
170	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	3.0	32
171	Construction and performance of the lead-scintillating fiber calorimeter prototypes for the KLOE detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 354, 352-363.	0.7	31
172	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
173	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
174	The in vitro effect of a lyophilized extract of wine obtained from Jacquez grapes on human chondrocytes. Phytomedicine, 2006, 13, 522-526.	2.3	30
175	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
176	SEARCH FOR GAMMA RAY BURSTS WITH THE ARGO-YBJ DETECTOR IN SCALER MODE. Astrophysical Journal, 2009, 699, 1281-1287.	1.6	29
177	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
178	The MU-RAY detector for muon radiography of volcanoes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 732, 423-426.	0.7	29
179	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
180	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29

#	Article	IF	CITATIONS
181	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
182	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
183	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
184	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
185	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
186	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
187	Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. European Physical Journal C, 2022, 82, 1.	1.4	27
188	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
189	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
190	Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 2018, 13, P05035-P05035.	0.5	25
191	Response to electrons and pions of the calorimeter for the CHORUS experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 378, 221-232.	0.7	22
192	Towards weighing the condensation energy to ascertain the Archimedes force of vacuum. Physical Review D, 2014, 90, .	1.6	22
193	Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017, 2017, 1.	1.6	22
194	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
195	An optical readout system for the drag free control of the LISA spacecraft. Astroparticle Physics, 2011, 34, 394-400.	1.9	21
196	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
197	Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower. Astroparticle Physics, 2015, 66, 1-7.	1.9	21
198	The KM3NeT potential for the next core-collapse supernova observation with neutrinos. European Physical Journal C, 2021, 81, 1.	1.4	21

#	Article	IF	CITATIONS
199	Approaching Free Fall on Two Degrees of Freedom: Simultaneous Measurement of Residual Force and Torque on a Double Torsion Pendulum. Physical Review Letters, 2016, 116, 051104.	2.9	20
200	Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. European Physical Journal C, 2020, 80, 1.	1.4	20
201	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	1.5	20
202	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
203	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	1.5	19
204	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
205	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	19
206	Measurements of light yield, attenuation length and time response of long samples of "blue― scintillating fibers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 370, 367-371.	0.7	18
207	Long term seismic noise acquisition and analysis in the Homestake mine with tunable monolithic sensors. Journal of Physics: Conference Series, 2010, 228, 012036.	0.3	18
208	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
209	KM3NeT front-end and readout electronics system: hardware, firmware, and software. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.0	18
210	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
211	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
212	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
213	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15
214	Tunable mechanical monolithic horizontal sensor with high Q for low frequency seismic noise measurement. Journal of Physics: Conference Series, 2010, 228, 012035.	0.3	15
215	Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation, 2020, 15, P10005-P10005.	0.5	15
216	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	0.6	14

#	Article	IF	CITATIONS
217	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
218	gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes. Computer Physics Communications, 2020, 256, 107477.	3.0	14
219	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	1.5	13
220	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
221	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
222	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
223	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
224	The Megapixel EBCCD: A high-resolution imaging tube sensitive to single photons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 413, 255-262.	0.7	12
225	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
226	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
227	High-resolution tracking using large capillary bundles filled with liquid scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 449, 60-80.	0.7	11
228	Relativistic orbits with gravitomagnetic corrections. Physica Scripta, 2009, 79, 025901.	1.2	11
229	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
230	"Quasi-complete―mechanical model for a double torsion pendulum. Physical Review D, 2013, 87, .	1.6	11
231	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
232	Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype. European Physical Journal C, 2016, 76, 1.	1.4	11
233	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	1.5	10
234	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10

FABIO GARUFI

#	Article	IF	CITATIONS
235	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
236	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
237	The KLOE electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 201-205.	0.7	9
238	"In Vitro―Differences among (R) and (S) Enantiomers of Profens in their Activities Related to Articular Pathophysiology. Inflammation, 2006, 29, 119-128.	1.7	9
239	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	1.5	9
240	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	1.5	9
241	Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor. Astroparticle Physics, 2018, 97, 19-26.	1.9	9
242	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
243	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
244	Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling. Journal of Instrumentation, 2020, 15, P11027-P11027.	0.5	9
245	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
246	Architecture and performance of the KM3NeT front-end firmware. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7, .	1.0	9
247	A Michelson interferometer for seismic wave measurement: theoretical analysis and system performances. , 2006, , .		9
248	Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search. European Physical Journal C, 2022, 82, 1.	1.4	9
249	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
250	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1.0</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mr a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .</mr </mml:mrow></mml:msup></mml:mrow></mml:math 	nl:mn>10<	:/m͡ml:mn> </td
251	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
252	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8

#	Article	IF	CITATIONS
253	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
254	The optical modules of the phase-2 of the NEMO project. Journal of Instrumentation, 2013, 8, P07001-P07001.	0.5	8
255	A method to stabilise the performance of negatively fed KM3NeT photomultipliers. Journal of Instrumentation, 2016, 11, P12014-P12014.	0.5	8
256	The Control Unit of the KM3NeT Data Acquisition System. Computer Physics Communications, 2020, 256, 107433.	3.0	8
257	A new vertex detector made of glass capillaries. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 386, 72-80.	0.7	7
258	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	1.2	7
259	Commissioning status of the Virgo interferometer. Classical and Quantum Gravity, 2010, 27, 149801.	1.5	7
260	Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System. IEEE Transactions on Nuclear Science, 2011, 58, 1588-1595.	1.2	7
261	Status and first results of the NEMO Phase-2 tower. Journal of Instrumentation, 2014, 9, C03045-C03045.	0.5	7
262	Performance of a highly segmented scintillating fibres electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 326, 477-482.	0.7	6
263	Performance of fine mesh photomultiplier tubes in magnetic fields up to 0.3 T. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 368, 628-634.	0.7	6
264	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
265	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
266	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	1.2	5
267	The status of virgo. Journal of Physics: Conference Series, 2008, 110, 062025.	0.3	5
268	The 2 Degrees of Freedom facility in Firenze for the study of weak forces. Journal of Physics: Conference Series, 2010, 228, 012037.	0.3	5
269	Characterization of electrostatic actuators for suspended mirror control with modulated bias. Journal of Physics: Conference Series, 2010, 228, 012018.	0.3	5
270	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5

#	Article	IF	CITATIONS
271	Nanobeacon: A time calibration device for the KM3NeT neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040, 167132.	0.7	5
272	Liquid scintillator calorimetry for the LHC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 240-244.	0.7	4
273	Adaptive filters for detection of gravitational waves from coalescing binaries. Physical Review D, 2006, 73, .	1.6	4
274	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	1.5	4
275	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 ${\rm \AA}-10{\rm \^a}^21$ on a 100 ms time scale. , 2009, , .		4
276	Ground testing, with a four mass torsion pendulum facility, of an optical-read-out for the LISA gravitational reference sensor. Journal of Physics: Conference Series, 2009, 154, 012012.	0.3	4
277	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
278	Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. Journal of High Energy Physics, 2021, 2021, 1.	1.6	4
279	A Neural Network-based ARX Model of Virgo Noise Perspectives in Neural Computing, 1999, , 171-183.	0.1	4
280	The archiving system of the Virgo antenna for gravitational wave detection. Review of Scientific Instruments, 1997, 68, 3907-3913.	0.6	3
281	Capillary detectors for high resolution tracking. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 86-91.	0.5	3
282	The Environment Monitoring of the VIRGO antenna for gravitational wave detection. AIP Conference Proceedings, 2000, , .	0.3	3
283	Hybrid control and acquisition system for distributed sensors for environmental monitoring. , 2007, , ·		3
284	A Hybrid Modular Control and Acquisition System. IEEE Transactions on Nuclear Science, 2008, 55, 295-301.	1.2	3
285	Gravitomagnetic corrections on gravitational waves. Physica Scripta, 2010, 81, 035008.	1.2	3
286	Blind source separation and Wigner-Ville transform as tools for the extraction of the gravitational wave signal. Physical Review D, 2011, 83, .	1.6	3
287	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85,	1.6	3
288	Underwater acoustic positioning system for the SMO and KM3NeT - Italia projects. , 2014, , .		3

#	Article	IF	CITATIONS
289	The trigger and data acquisition for the NEMO-Phase 2 tower. , 2014, , .		3
290	Improving sensitivity and duty-cycle of a double torsion pendulum. Classical and Quantum Gravity, 2019, 36, 125004.	1.5	3
291	Thermal neutron radiation damage on light yield and attenuation length of scintillating fibres. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 338, 398-403.	0.7	2
292	Charged-particle tracking with high spatial and temporal resolution using capillary arrays filled with liquid scintillator. , 1995, , .		2
293	Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor. AlP Conference Proceedings, 2006, , .	0.3	2
294	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
295	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
296	Improvement of the performance of a classical matched filter by an independent component analysis preprocessing. Physical Review D, 2012, 85, .	1.6	2
297	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
298	An optical read-out system for the LISA gravitational reference sensor: present status and perspectives Journal of Physics: Conference Series, 2017, 840, 012047.	0.3	2
299	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
300	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
301	Performance of a scintillating fibres semiprojective electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 357, 363-368.	0.7	1
302	Performance of the CHORUS lead-scintillating fiber calorimeter. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 198-203.	0.5	1
303	A single-photon multichannel detector: the megapixel EBCCD. , 1998, , .		1
304	Hybrid control and acquisition system for remote sensing systems for environmental monitoring. , 2006, , .		1
305	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
306	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. ,		1

2007,,.

#	Article	IF	CITATIONS
307	Application of a hybrid modular acquisition system to the control of a suspended interferometer with electrostatic actuators. Journal of Physics: Conference Series, 2008, 122, 012011.	0.3	1
308	Model independent numerical procedure for the diagonalization of a Multiple Input Multiple Output dynamic system. , 2010, , .		1
309	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
310	Long-term optical background measurements in the Capo Passero deep-sea site. , 2014, , .		1
311	Liquid actuated gravity experiments. International Journal of Modern Physics D, 2019, 28, 1950115.	0.9	1
312	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
313	A very forward calorimeter for the LHC: Experimental results Nuclear Physics, Section B, Proceedings Supplements, 1995, 44, 40-44.	0.5	Ο
314	Performance of a scintillating fibres semiprojective electromagnetic calorimeter. Nuclear Physics, Section B, Proceedings Supplements, 1995, 44, 163-167.	0.5	0
315	A liquid scintillator calorimeter for the forward region of an LHC experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 362, 386-394.	0.7	0
316	High resolution tracking devices based on capillaries filled with liquid scintillator. , 1998, , .		0
317	Data archiving and distribution of the Virgo antenna for gravitational wave detection. , 0, , .		0
318	A neural network approach for the noise identification and data quality of the VIRGO antenna. AIP Conference Proceedings, 2000, , .	0.3	0
319	Gravitational wave signal detection with neural networks for the VIRGO antenna. AIP Conference Proceedings, 2000, , .	0.3	Ο
320	Data archiving and distribution of the Virgo antenna for gravitational wave detection. IEEE Transactions on Nuclear Science, 2000, 47, 319-323.	1.2	0
321	A hierarchical neural network-based approach to VIRGO noise identification. , 2000, , .		Ο
322	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	1.5	0
323	A hybrid modular control and acquisition system. , 2007, , .		0
324	Hybrid control and data acquisition system for geographically distributed sensors for environmental monitoring. , 2007, , .		0

#	Article	IF	CITATIONS
325	Laser interferometric sensor for seismic waves velocity measurement. , 2007, , .		0
326	Laser interferometric sensor for seismic waves measurement. , 2007, , .		0
327	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
328	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
329	Hybrid control and acquisition system for remote control systems for environmental monitoring. , 2008, , .		0
330	Relativistic orbits and Gravitational waves from gravitomagnetic corrections. Journal of Physics: Conference Series, 2010, 228, 012052.	0.3	0
331	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
332	New strategy for the control of low frequency large band mechanical suspensions and inertial platforms. , 2012, , .		0
333	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	0
334	THE PAST AND THE FUTURE OF DIRECT SEARCH OF GW FROM PULSARS IN THE ERA OF GW ANTENNAS. Acta Polytechnica, 2013, 53, 742-745.	0.3	0
335	Probing Gravitational Theories with Eccentric Eclipsing Detached Binary Stars. Acta Polytechnica CTU Proceedings, 2014, 1, 255-258.	0.3	0
336	Measurement of the atmospheric muon flux at 3500 m depth with the NEMO Phase-2 detector. EPJ Web of Conferences, 2016, 121, 05015.	0.1	0
337	A two-stage torsion pendulum for ground testing free fall conditions on two degrees of freedom. Journal of Physics: Conference Series, 2017, 840, 012035.	0.3	0
338	A two-stage torsion pendulum for ground testing free fall conditions on two degrees of freedom. Nuclear and Particle Physics Proceedings, 2017, 291-293, 134-139.	0.2	0
339	Advanced Virgo results and the dawn of gravitational multimessenger astronomy. Nuclear and Particle Physics Proceedings, 2018, 303-305, 86-91.	0.2	0
340	Advanced Virgo Status. , 2017, , .		0
341	Crystal Eye: a wide sight on the Universe looking for the electromagnetic counterpart of gravitational waves. , 2019, , .		0
342	Preliminary results of the pixel characterization for the Crystal Eye, a new x- and gamma ray satellite detector for multi-messenger astronomy. , 2020, , .		0