Fabio Garufi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7846986/fabio-garufi-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44,362 78 312 209 h-index g-index citations papers 5.05 55,242 347 4.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
312	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. <i>Classical and Quantum Gravity</i> , 2022 , 39, 045006	3.3	2
311	Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. <i>European Physical Journal C</i> , 2022 , 82, 1	4.2	0
310	Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search. <i>European Physical Journal C</i> , 2022 , 82, 1	4.2	1
309	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	1
308	Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. <i>Journal of High Energy Physics</i> , 2021 , 2021, 1	5.4	O
307	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
306	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. <i>Physical Review D</i> , 2021 , 103,	4.9	15
305	The KM3NeT potential for the next core-collapse supernova observation with neutrinos. <i>European Physical Journal C</i> , 2021 , 81, 1	4.2	11
304	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. <i>Astrophysical Journal Letters</i> , 2021 , 913, L27	7.9	13
303	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194
302	Observation of Gravitational Waves from Two Neutron Star B lack Hole Coalescences. <i>Astrophysical Journal Letters</i> , 2021 , 915, L5	7.9	142
301	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. <i>Physical Review D</i> , 2021 , 103,	4.9	81
300	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21
299	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. <i>Physical Review X</i> , 2021 , 11,	9.1	311
298	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo third observing run. <i>Physical Review D</i> , 2021 , 104,	4.9	33
297	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo first three observing runs. <i>Physical Review D</i> , 2021 , 104,	4.9	12
296	Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. <i>SoftwareX</i> , 2021 , 13, 100658	2.7	96

(2020-2021)

295	Architecture and performance of the KM3NeT front-end firmware. <i>Journal of Astronomical Telescopes, Instruments, and Systems</i> , 2021 , 7,	1.1	4
294	Event reconstruction for KM3NeT/ORCA using convolutional neural networks. <i>Journal of Instrumentation</i> , 2020 , 15, P10005-P10005	1	4
293	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571
292	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
291	Model comparison from LIGON irgo data on GW170817 binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006	3.3	69
290	A guide to LIGON irgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002	3.3	78
289	Advanced Virgo Status. <i>Journal of Physics: Conference Series</i> , 2020 , 1342, 012010	0.3	8
288	Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. <i>European Physical Journal C</i> , 2020 , 80, 1	4.2	11
287	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. <i>Astrophysical Journal Letters</i> , 2020 , 900, L13	7.9	207
286	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32
285	gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes. <i>Computer Physics Communications</i> , 2020 , 256, 107477	4.2	8
284	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
283	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9
282	Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling. <i>Journal of Instrumentation</i> , 2020 , 15, P11027-P11027	1	3
281	The Control Unit of the KM3NeT Data Acquisition System. <i>Computer Physics Communications</i> , 2020 , 256, 107433	4.2	3
280	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420
279	Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. <i>Physical Review Letters</i> , 2020 , 125, 131101	7.4	17
278	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. <i>Physical Review D</i> , 2020 , 102,	4.9	212

277	The advanced Virgo longitudinal control system for the O2 observing run. <i>Astroparticle Physics</i> , 2020 , 116, 102386	2.4	7
276	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. <i>Physical Review D</i> , 2020 , 101,	4.9	36
275	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
274	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31
273	Liquid actuated gravity experiments. International Journal of Modern Physics D, 2019, 28, 1950115	2.2	
272	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
271	Search for the isotropic stochastic background using data from Advanced LIGOE second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
270	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77
269	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17
268	Improving sensitivity and duty-cycle of a double torsion pendulum. <i>Classical and Quantum Gravity</i> , 2019 , 36, 125004	3.3	2
267	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. <i>Astrophysical Journal</i> , 2019 , 870, 134	4.7	23
266	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22
265	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45
264	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
263	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
262	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49
261	Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. <i>Astroparticle Physics</i> , 2019 , 111, 100-110	2.4	29
260	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17

(2018-2019)

259	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43
258	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 20152017 LIGO Data. <i>Astrophysical Journal</i> , 2019 , 879, 10	4.7	63
257	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	4.9	81
256	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39
255	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102	7.4	204
254	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36
253	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39
252	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
251	KM3NeT front-end and readout electronics system: hardware, firmware, and software. <i>Journal of Astronomical Telescopes, Instruments, and Systems</i> , 2019 , 5, 1	1.1	10
250	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22
249	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258
248	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
247	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
246	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
245	Properties of the Binary Neutron Star Merger GW170817. <i>Physical Review X</i> , 2019 , 9,	9.1	423
244	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
243	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
242	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12

241	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50
240	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
239	Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor. <i>Astroparticle Physics</i> , 2018 , 97, 19-26	2.4	4
238	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37
237	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60
236	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
235	Advanced Virgo results and the dawn of gravitational multimessenger astronomy. <i>Nuclear and Particle Physics Proceedings</i> , 2018 , 303-305, 86-91	0.4	
234	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
233	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
232	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35
231	Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. <i>Journal of Instrumentation</i> , 2018 , 13, P05035-P05035	1	14
230	Status of Advanced Virgo. <i>EPJ Web of Conferences</i> , 2018 , 182, 02003	0.3	4
229	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
228	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
227	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
226	Observation of Gravitational Waves from a Binary Black Hole Merger 2017 , 291-311		27
225	A two-stage torsion pendulum for ground testing free fall conditions on two degrees of freedom. Journal of Physics: Conference Series, 2017 , 840, 012035	0.3	
224	An optical read-out system for the LISA gravitational reference sensor: present status and perspectives <i>Journal of Physics: Conference Series</i> , 2017 , 840, 012047	0.3	2

(2017-2017)

2	23	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
2.	22	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
2.	21	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
2:	20	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
2:	19	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
2:	18	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
2	17	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
2:	16	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
2	15	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
2:	14	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
2	13	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
2:	12	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
2:	11	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
2:	10	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
20	09	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
20	08	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
20	07	Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. <i>Journal of High Energy Physics</i> , 2017 , 2017, 1	5.4	17
20	06	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. <i>Astrophysical Journal Letters</i> , 2017 , 850, L35	7.9	104

205	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
204	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
203	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
202	Status of the Advanced Virgo gravitational wave detector. <i>International Journal of Modern Physics A</i> , 2017 , 32, 1744003	1.2	5
201	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
200	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
199	A two-stage torsion pendulum for ground testing free fall conditions on two degrees of freedom. <i>Nuclear and Particle Physics Proceedings</i> , 2017 , 291-293, 134-139	0.4	
198	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
197	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
196	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
195	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
194	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
193	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
192	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
191	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
190	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
189	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
188	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253

(2016-2016)

187	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2 013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
186	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
185	Approaching Free Fall on Two Degrees of Freedom: Simultaneous Measurement of Residual Force and Torque on a Double Torsion Pendulum. <i>Physical Review Letters</i> , 2016 , 116, 051104	7∙4	15
184	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
183	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
182	SUPPLEMENT: [IOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[[2016, ApJL, 826, L13]. <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38
181	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
180	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
179	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515
178	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
177	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
176	The prototype detection unit of the KM3NeT detector. European Physical Journal C, 2016, 76, 1	4.2	25
175	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
174	Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype. <i>European Physical Journal C</i> , 2016 , 76, 1	4.2	7
173	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
172	Measurement of the atmospheric muon flux at 3500 m depth with the NEMO Phase-2 detector. <i>EPJ Web of Conferences</i> , 2016 , 121, 05015	0.3	
171	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
170	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52

169	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
168	A method to stabilise the performance of negatively fed KM3NeT photomultipliers. <i>Journal of Instrumentation</i> , 2016 , 11, P12014-P12014	1	4
167	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
166	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
165	Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 084001	2.9	333
164			
163	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26
162	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38
161	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
160	The Advanced Virgo detector. <i>Journal of Physics: Conference Series</i> , 2015 , 610, 012014	0.3	18
159	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
158	Advanced Virgo: a second-generation interferometric gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2015 , 32, 024001	3.3	1567
157	Joint measurement of the atmospheric muon flux through the Puy de Dfine volcano with plastic scintillators and Resistive Plate Chambers detectors. <i>Journal of Geophysical Research: Solid Earth</i> , 2015 , 120, 7290-7307	3.6	52
156	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
155	Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower. <i>Astroparticle Physics</i> , 2015 , 66, 1-7	2.4	20
154	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
153	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014 , 785, 119	4.7	109
152	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18

151	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34	
150	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005\(\textit{D} 010. \) Physical Review D, 2014 , 89,	4.9	26	
149	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30	
148	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32	
147	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25	
146	Concepts and research for future detectors. <i>General Relativity and Gravitation</i> , 2014 , 46, 1	2.3	2	
145	Status and first results of the NEMO Phase-2 tower. <i>Journal of Instrumentation</i> , 2014 , 9, C03045-C030	451	7	
144	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165013	3.3	8	
143	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51	
142	Deep sea tests of a prototype of the KM3NeT digital optical module. <i>European Physical Journal C</i> , 2014 , 74, 1	4.2	34	
141	The MU-RAY project: detector technology and first data from Mt. Vesuvius. <i>Journal of Instrumentation</i> , 2014 , 9, C02029-C02029	1	37	
140	Underwater acoustic positioning system for the SMO and KM3NeT - Italia projects 2014,		2	
139	The trigger and data acquisition for the NEMO-Phase 2 tower 2014 ,		3	
138	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54	
137	Towards weighing the condensation energy to ascertain the Archimedes force of vacuum. <i>Physical Review D</i> , 2014 , 90,	4.9	16	
136	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59	
135	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74	
134	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25	

133	The MU-RAY detector for muon radiography of volcanoes. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2013 , 732, 423-426	1.2	21
132	Quasi-completeImechanical model for a double torsion pendulum. <i>Physical Review D</i> , 2013 , 87,	4.9	9
131	The MU-RAY experiment. An application of SiPM technology to the understanding of volcanic phenomena. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2013 , 718, 134-137	1.2	32
130	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\textbf{Q} 010. \textit{ Physical Review D, 2013, 87,} \)	4.9	91
129	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
128	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 008-008	6.4	29
127	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. <i>Classical and Quantum Gravity</i> , 2013 , 30, 055017	3.3	9
126	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
125	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
124	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57
123	The optical modules of the phase-2 of the NEMO project. <i>Journal of Instrumentation</i> , 2013 , 8, P07001-F	P0 7 001	7
122	Testing gravitational theories using eccentric eclipsing detached binaries. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 2371-2379	4.3	28
121	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
120	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
119	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40
118	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
117	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
116	Publisher Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D 82, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2

115	Improvement of the performance of a classical matched filter by an independent component analysis preprocessing. <i>Physical Review D</i> , 2012 , 85,	4.9	2
114	Virgo: a laser interferometer to detect gravitational waves. <i>Journal of Instrumentation</i> , 2012 , 7, P0301	2- <u>R</u> 030	12 ₁₂
113	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005	3.3	4
112	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28	8	57
111	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59
110	Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	3
109	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69
108	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
107	The NoEMi (Noise Frequency Event Miner) framework. <i>Journal of Physics: Conference Series</i> , 2012 , 363, 012037	0.3	10
106	Implementation and testing of the first prompt search for ravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
105	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. <i>International Journal of Modern Physics D</i> , 2011 , 20, 2075-2079	2.2	4
104	Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System. <i>IEEE Transactions on Nuclear Science</i> , 2011 , 58, 1588-1595	1.7	4
103	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. <i>Journal of Low Frequency Noise Vibration and Active Control</i> , 2011 , 30, 63-79	1.5	19
102	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
101	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. <i>Astrophysical Journal</i> , 2011 , 737, 93	4.7	75
100	Automatic Alignment system during the second science run of the Virgo interferometer. <i>Astroparticle Physics</i> , 2011 , 34, 327-332	2.4	5
99	Performance of the Virgo interferometer longitudinal control system during the second science run. <i>Astroparticle Physics</i> , 2011 , 34, 521-527	2.4	10
98	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. <i>Physical Review D</i> , 2011 , 83,	4.9	77

97	An optical readout system for the drag free control of the LISA spacecraft. <i>Astroparticle Physics</i> , 2011 , 34, 394-400	2.4	17
96	Calibration and sensitivity of the Virgo detector during its second science run. <i>Classical and Quantum Gravity</i> , 2011 , 28, 025005	3.3	83
95	Blind source separation and Wigner-Ville transform as tools for the extraction of the gravitational wave signal. <i>Physical Review D</i> , 2011 , 83,	4.9	3
94	A state observer for the Virgo inverted pendulum. <i>Review of Scientific Instruments</i> , 2011 , 82, 094502	1.7	6
93	Directional limits on persistent gravitational waves using LIGO S5 science data. <i>Physical Review Letters</i> , 2011 , 107, 271102	7.4	85
92	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002	3.3	140
91	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. <i>Astrophysical Journal</i> , 2010 , 713, 671-685	4.7	140
90	Gravitomagnetic corrections on gravitational waves. <i>Physica Scripta</i> , 2010 , 81, 035008	2.6	1
89	Noise from scattered light in Virgo's second science run data. <i>Classical and Quantum Gravity</i> , 2010 , 27, 194011	3.3	31
88	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. <i>Physical Review D</i> , 2010 , 82,	4.9	100
87	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780-90	0.2	8
86	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. <i>Physical Review D</i> , 2010 , 81,	4.9	81
85	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2010 , 27, 173001	3.3	869
84	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. <i>Astrophysical Journal</i> , 2010 , 715, 1453	3- 1 : 7 61	79
83	Commissioning status of the Virgo interferometer. Classical and Quantum Gravity, 2010, 27, 149801	3.3	4
82	The 2 Degrees of Freedom facility in Firenze for the study of weak forces. <i>Journal of Physics:</i> Conference Series, 2010 , 228, 012037	0.3	5
81	Relativistic orbits and Gravitational waves from gravitomagnetic corrections. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012052	0.3	
80	Tools for noise characterization in Virgo. <i>Journal of Physics: Conference Series</i> , 2010 , 243, 012004	0.3	

(2008-2010)

79	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012015	0.3	7
78	Tunable mechanical monolithic horizontal sensor with high Q for low frequency seismic noise measurement. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012035	0.3	6
77	Long term seismic noise acquisition and analysis in the Homestake mine with tunable monolithic sensors. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012036	0.3	11
76	Status and perspectives of the Virgo gravitational wave detector. <i>Journal of Physics: Conference Series</i> , 2010 , 203, 012074	0.3	22
75	Characterization of electrostatic actuators for suspended mirror control with modulated bias. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012018	0.3	4
74	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. <i>Astrophysical Journal</i> , 2010 , 715, 1438-1	452	54
73	Performances of the Virgo interferometer longitudinal control system. <i>Astroparticle Physics</i> , 2010 , 33, 75-80	2.4	8
72	Measurements of Superattenuator seismic isolation by Virgo interferometer. <i>Astroparticle Physics</i> , 2010 , 33, 182-189	2.4	54
71	Automatic Alignment for the first science run of the Virgo interferometer. <i>Astroparticle Physics</i> , 2010 , 33, 131-139	2.4	10
70	SEARCH FOR GAMMA RAY BURSTS WITH THE ARGO-YBJ DETECTOR IN SCALER MODE. Astrophysical Journal, 2009 , 699, 1281-1287	4.7	27
69	2009,		1
68	Laser with an in-loop relative frequency stability of 1.010101 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009 , 79,	2.6	6
67	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. <i>Classical and Quantum Gravity</i> , 2009 , 26, 204002	3.3	5
66	Relativistic orbits with gravitomagnetic corrections. <i>Physica Scripta</i> , 2009 , 79, 025901	2.6	7
65	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009	3.3	15
65 64	Gravitational wave burst search in the Virgo C7 data. <i>Classical and Quantum Gravity</i> , 2009 , 26, 085009 An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009 , 460, 990-4	3·3 50·4	15 267
	An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> ,		

61	A Hybrid Modular Control and Acquisition System. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 295-3	30 1 .7	1
60	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 302-310	1.7	4
59	First joint gravitational wave search by the AURIGAEXPLORERNAUTILUSNirgo Collaboration. <i>Classical and Quantum Gravity</i> , 2008 , 25, 205007	3.3	11
58	The Virgo 3 km interferometer for gravitational wave detection. <i>Journal of Optics</i> , 2008 , 10, 064009		29
57	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114046	3.3	
56	Search for gravitational waves associated with GRB 050915a using the Virgo detector. <i>Classical and Quantum Gravity</i> , 2008 , 25, 225001	3.3	23
55	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045	3.3	115
54	Astrophysically triggered searches for gravitational waves: status and prospects. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114051	3.3	24
53	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001	3.3	110
52	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184	0033	6
52 51	Noise studies during the first Virgo science run and after. <i>Classical and Quantum Gravity</i> , 2008 , 25, 184 Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232	00§3 1.7	3
	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE</i>		
51	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 Application of a hybrid modular acquisition system to the control of a suspended interferometer		
51	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 Application of a hybrid modular acquisition system to the control of a suspended interferometer with electrostatic actuators. <i>Journal of Physics: Conference Series</i> , 2008 , 122, 012011 VIRGO: a large interferometer for gravitational wave detection started its first scientific run.	0.3	3
51 50 49	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 Application of a hybrid modular acquisition system to the control of a suspended interferometer with electrostatic actuators. <i>Journal of Physics: Conference Series</i> , 2008 , 122, 012011 VIRGO: a large interferometer for gravitational wave detection started its first scientific run. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032007	0.3	3 1 15
51504948	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 Application of a hybrid modular acquisition system to the control of a suspended interferometer with electrostatic actuators. <i>Journal of Physics: Conference Series</i> , 2008 , 122, 012011 VIRGO: a large interferometer for gravitational wave detection started its first scientific run. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032007 The status of virgo. <i>Journal of Physics: Conference Series</i> , 2008 , 110, 062025	0.3 0.3	3 1 15
51 50 49 48 47	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 Application of a hybrid modular acquisition system to the control of a suspended interferometer with electrostatic actuators. <i>Journal of Physics: Conference Series</i> , 2008 , 122, 012011 VIRGO: a large interferometer for gravitational wave detection started its first scientific run. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032007 The status of virgo. <i>Journal of Physics: Conference Series</i> , 2008 , 110, 062025 Lock acquisition of the Virgo gravitational wave detector. <i>Astroparticle Physics</i> , 2008 , 30, 29-38	1.7 0.3 0.3 2.4	3 1 15 1

(2000-2007)

43	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. <i>Classical and Quantum Gravity</i> , 2007 , 24, S491-S499	3.3	13
42	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443	3.3	8
41	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. <i>Classical and Quantum Gravity</i> , 2007 , 24, S415-S422	3.3	4
40	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388	3.3	51
39	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-57	753	8
38	Measurement of the optical parameters of the Virgo interferometer. <i>Applied Optics</i> , 2007 , 46, 3466-84	1.7	12
37	Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of human chondrocyte cultures. <i>Journal of Ethnopharmacology</i> , 2007 , 111, 315-21	5	34
36	The in vitro effect of a lyophilized extract of wine obtained from Jacquez grapes on human chondrocytes. <i>Phytomedicine</i> , 2006 , 13, 522-6	6.5	27
35	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836	3.3	
34	Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor. <i>AIP Conference Proceedings</i> , 2006 ,	Ο	2
33	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642	3.3	166
32	Adaptive filters for detection of gravitational waves from coalescing binaries. <i>Physical Review D</i> , 2006 , 73,	4.9	3
31	A Michelson interferometer for seismic wave measurement: theoretical analysis and system performances 2006 ,		4
30	Protective effect of Capparis spinosa on chondrocytes. <i>Life Sciences</i> , 2005 , 77, 2479-88	6.8	75
29	"In vitro" differences among (R) and (S) enantiomers of profens in their activities related to articular pathophysiology. <i>Inflammation</i> , 2005 , 29, 119-28	5.1	7
28	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. <i>Review of Scientific Instruments</i> , 2002 , 73, 2143-2149	1.7	13
27	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 142	1 ₃ 1 <u>4</u> 28	80
26	High-resolution tracking using large capillary bundles filled with liquid scintillator. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2000 , 449, 60-80	1.2	10

25	The Environment Monitoring of the VIRGO antenna for gravitational wave detection. <i>AIP Conference Proceedings</i> , 2000 ,	О	2
24	. IEEE Transactions on Nuclear Science, 2000 , 47, 319-323	1.7	
23	A Neural Network-based ARX Model of Virgo Noise <i>Perspectives in Neural Computing</i> , 1999 , 171-183		2
22	A search for Hoscillation. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1998 , 424, 202-212	4.2	38
21	Tracking with capillaries and liquid scintillator. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1998 , 61, 390-395		5
20	The Megapixel EBCCD: A high-resolution imaging tube sensitive to single photons. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1998 , 413, 255-262	1.2	12
19	Search for Hoscillation using the Edecay modes into a single charged particle. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1998 , 434, 205-213	4.2	34
18	The archiving system of the Virgo antenna for gravitational wave detection. <i>Review of Scientific Instruments</i> , 1997 , 68, 3907-3913	1.7	2
17	Capillary detectors for high resolution tracking. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1997 , 54, 86-91		3
16	Performance of the CHORUS lead-scintillating fiber calorimeter. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1997 , 54, 198-203		1
15	A new vertex detector made of glass capillaries. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1997 , 386, 72-80	1.2	5
14	The CHORUS experiment to search for 🛭 🏗 scillation. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1997 , 401, 7-44	1.2	166
13	Measurements of light yield, attenuation length and time response of long samples of Blue□ scintillating fibers. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1996 , 370, 367-371	1.2	16
12	Response to electrons and pions of the calorimeter for the CHORUS experiment. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1996 , 378, 221-232	1.2	22
11	Performance of fine mesh photomultiplier tubes in magnetic fields up to 0.3 T. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1996 , 368, 628-634	1.2	6
10	Construction and performance of the lead-scintillating fiber calorimeter prototypes for the KLOE detector. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1995 , 354, 352-363	1.2	28
9	Liquid scintillator calorimetry for the LHC. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1995 , 360, 240-244	1.2	3
8	Charged-particle tracking with high spatial and temporal resolution using capillary arrays filled with liquid scintillator 1995 ,		2

LIST OF PUBLICATIONS

A very forward calorimeter for the LHC: Experimental results.. *Nuclear Physics, Section B, Proceedings Supplements,* **1995**, 44, 40-44

6	Performance of a scintillating fibres semiprojective electromagnetic calorimeter. <i>Nuclear Physics,</i> Section B, Proceedings Supplements, 1995 , 44, 163-167		
5	Performance of a scintillating fibres semiprojective electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1995 , 357, 363-368	1.2	1
4	The KLOE electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1995 , 360, 201-205	1.2	9
3	A liquid scintillator calorimeter for the forward region of an LHC experiment. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1995 , 362, 386-394	1.2	
2	Thermal neutron radiation damage on light yield and attenuation length of scintillating fibres. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994 , 338, 398-403	1.2	2
1	Performance of a highly segmented scintillating fibres electromagnetic calorimeter. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1993 , 326, 477-482	1.2	6