
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846815/publications.pdf Version: 2024-02-01

SHILLIE PANC

#	Article	IF	CITATIONS
1	Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Materialia, 2007, 55, 3719-3726.	7.9	169
2	Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Materials & Design, 2015, 67, 9-19.	5.1	137
3	Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review. Entropy, 2018, 20, 878.	2.2	100
4	Ductile Fe-Based Bulk Metallic Glass with Good Soft-Magnetic Properties. Materials Transactions, 2007, 48, 1157-1160.	1.2	93
5	Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties. Journal of Alloys and Compounds, 2021, 860, 158436.	5.5	81
6	Corrosion Behavior of Zr–(Nb–)Al–Ni–Cu Glassy Alloys. Materials Transactions, JIM, 2000, 41, 1490-1494.	0.9	80
7	New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications. Journal of Alloy and Compounds, 2015, 625, 323-327.	^S 5.5	79
8	Bio-corrosion study on zirconium-based bulk-metallic glasses. Intermetallics, 2009, 17, 195-199.	3.9	74
9	Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics, 2020, 124, 106845.	3.9	74
10	Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability. Journal of Materials Research, 2011, 26, 539-546.	2.6	69
11	New Ti-Based Bulk Metallic Glasses with Significant Plasticity. Materials Transactions, 2005, 46, 2218-2220.	1.2	66
12	Effects of Yttrium and Erbium Additions on Class-Forming Ability and Mechanical Properties of Bulk Glassy Zr–Al–Ni–Cu Alloys. Materials Transactions, 2006, 47, 450-453.	1.2	59
13	Effect of similar elements on improving glass-forming ability of La–Ce-based alloys. Journal of Alloys and Compounds, 2009, 483, 60-63.	5.5	59
14	Formation, corrosion behavior, and mechanical properties of bulk glassy Zr–Al–Co–Nb alloys. Journal of Materials Research, 2003, 18, 1652-1658.	2.6	53
15	Bulk glassy Ni(Co–)Nb–Ti–Zr alloys with high corrosion resistance and high strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 368-371.	5.6	50
16	Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics, 2022, 141, 107421.	3.9	45
17	Formation of Bulk Glassy Ni-(Co-)Nb-Ti-Zr Alloys with High Corrosion Resistance. Materials Transactions, 2002, 43, 1771-1773.	1.2	38
18	Surface vitrification of alloys by laser surface treatment. Journal of Alloys and Compounds, 2012, 511, 215-220.	5.5	37

#	Article	IF	CITATIONS
19	Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting. Scripta Materialia, 2012, 66, 1057-1060.	5.2	32
20	In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. Journal of Non-Crystalline Solids, 2015, 427, 134-138.	3.1	32
21	Formation and properties of Ti-based Ti–Zr–Cu–Fe–Sn–Si bulk metallic glasses with different (TiÂ+ÂZr)/Cu ratios for biomedical application. Intermetallics, 2016, 72, 36-43.	3.9	32
22	Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa. Science Bulletin, 2011, 56, 3972-3977.	1.7	31
23	Niâ€free Zr–Cu–Al–Nb–Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1472-1482.	3.4	30
24	Ti Cu Zr Fe Sn Si Sc bulk metallic glasses with good mechanical properties for biomedical applications. Journal of Alloys and Compounds, 2016, 679, 341-349.	5.5	29
25	General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid. Nano Research, 2016, 9, 2467-2477.	10.4	26
26	Ductile Fe-Based BMGs with High Glass Forming Ability and High Strength. Materials Transactions, 2008, 49, 231-234.	1.2	25
27	Effect of Ni addition on the glass-forming ability and soft-magnetic properties of FeNiBPNb metallic glasses. Science Bulletin, 2011, 56, 3932-3936.	1.7	24
28	Tribological behaviors of a Ni-free Ti-based bulk metallic glass in air and a simulated physiological environment. Journal of Alloys and Compounds, 2018, 766, 1030-1036.	5.5	22
29	In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses. Materials Science and Engineering C, 2016, 68, 632-641.	7.3	21
30	The Influence of Similar Element Coexistence in (La-Ce)-Al-(Co-Cu) Bulk Metallic Glasses. Materials Transactions, 2007, 48, 1680-1683.	1.2	19
31	Nanocrystalline Fe83Si4B10P2Cu1 ribbons with improved soft magnetic properties and bendability prepared via rapid annealing of the amorphous precursor. Journal of Magnetism and Magnetic Materials, 2021, 523, 167583.	2.3	19
32	Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment. Intermetallics, 2016, 73, 31-39.	3.9	18
33	Formation of Ti–Zr–Cu–Ni–Sn–Si bulk metallic glasses with good plasticity. Journal of Alloys and Compounds, 2010, 504, S10-S13.	5.5	15
34	Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Metals, 2018, 37, 831-837.	7.1	15
35	Glass-Forming Ability and Mechanical Properties of Sm-Doped Fe–Cr–Mo–C–B Glassy Alloys. Materials Transactions, 2005, 46, 2949-2953.	1.2	14
36	Chill-zone aluminum alloys with GPa strength and good plasticity. Journal of Materials Research, 2009. 24. 1513-1521.	2.6	14

#	Article	IF	CITATIONS
37	Effect of the cooling rate on plastic deformability of a Zr-based bulk metallic glass. Science China: Physics, Mechanics and Astronomy, 2010, 53, 415-418.	5.1	14
38	Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta bulk metallic glasses with good corrosion resistance as potential biomaterials. Rare Metals, 2020, 39, 688-694.	7.1	14
39	Influence of laser surface melting on glass formation and tribological behaviors of Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ alloy. Journal of Materials Research, 2011, 26, 2642-2652.	2.6	13
40	High-zirconium bulk metallic glasses with high strength and large ductility. Science China: Physics, Mechanics and Astronomy, 2013, 56, 540-544.	5.1	12
41	Effect of Ti substitution for Al on the cuboidal nanoprecipitates in Al _{0.7} NiCoFeCr ₂ high-entropy alloys. Journal of Materials Research, 2018, 33, 3266-3275.	2.6	12
42	Effect of Minor Au Addition on Glass-Forming Ability and Mechanical Properties of Pd–Cu–Au–Si–P Alloys. Materials Transactions, 2005, 46, 2945-2948.	1.2	11
43	Formation and biocorrosion behavior of Zr-Al-Co-Nb bulk metallic glasses. Science Bulletin, 2012, 57, 1723-1727.	1.7	11
44	Thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nd addition. Rare Metals, 2017, 36, 183-187.	7.1	9
45	Formation and properties of biocompatible Ti-based bulk metallic glasses in the Ti–Cu–Zr–Fe–Sn–Si–Ag system. Journal of Non-Crystalline Solids, 2021, 571, 121060.	3.1	9
46	Ti–Zr–Hf–Nb–Ta–Sn high-entropy alloys with good properties as potential biomaterials. Rare Metals, 2022, 41, 2305-2315.	7.1	9
47	Effects of crystallization on corrosion behaviours of a Ni-based bulk metallic glass. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 146-150.	4.9	8
48	Magnetic softening of the Fe83Si3B11P2Cu1 amorphous/nanocrystalline alloys with large-size pre-existing α-Fe grains by high heating-rate annealing. Journal of Materials Research and Technology, 2022, 20, 161-168.	5.8	8
49	Ce-Rich Misch Metal-Based Bulk Metallic Glasses with High Glass-Forming Ability. Materials Transactions, 2005, 46, 2291-2294.	1.2	7
50	Formation and Thermal Stability of Cu _{46.25} Zr _{44.25} Al _{7.5} Er ₂ Bulk Metallic Glass with a Diameter of 12 mm. Materials Transactions, 2006, 47, 2882-2884.	1.2	7
51	Correlation of glass-forming ability to thermal properties in Ti-based bulk metallic glasses. Journal of Alloys and Compounds, 2013, 546, 7-13.	5.5	7
52	Surface vitrification of alloys by pulsed electrical discharge treatment. Journal of Alloys and Compounds, 2017, 707, 148-154.	5.5	7
53	Enhanced Wear Resistance of Zr-Based Bulk Metallic Glass by Thermal Oxidation Treatment. Materials Transactions, 2017, 58, 520-523.	1.2	7
54	Recent Advances in Spectroscopy Technology for Trace Analysis of Persistent Organic Pollutants. Applied Sciences (Switzerland), 2019, 9, 3439.	2.5	7

#	Article	IF	CITATIONS
55	EFFECT OF COEXISTENCE OF SIMILAR ELEMENTS La AND Ce ON FORMATION OF (La-Ce)-Al-Cu BULK METALLIC GLASSES. International Journal of Modern Physics B, 2009, 23, 1235-1240.	2.0	5
56	Effect of microstructure on corrosion behaviours of a Ni-based metallic glass. Rare Metals, 2011, 30, 529-532.	7.1	5
57	Formation and Mechanical Properties of Bulk Classy (Cu _{0.55} Zr _{0.40} Al _{0.05}) ₉₉ RE ₁ (RE=Y, Pr,)	[j £ ₽Qq1 1	. 0. 784314
58	Precipitation of Icosahedral Phase in Zr-Ni-Nb-Cu-Al Metallic Glasses. Materials Transactions, 2009, 50, 1838-1842.	1.2	3
59	Formation and properties of a Zr-based amorphous coating by laser cladding. Rare Metals, 2018, , 1.	7.1	3
60	COMPOSITION DESIGN AND GLASS-FORMING ABILITY OF TI -BASED BULK METALLIC GLASSES. International Journal of Modern Physics B, 2010, 24, 2326-2331.	2.0	2
61	Correlation between supercooled liquid region and crystallization behavior with alloy composition of La-Al-Cu metallic glasses. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1608-1611.	5.1	2
62	Formation and mechanical properties of Zr-Nb-Cu-Ni-Al-Lu bulk glassy alloys with superior glass-forming ability. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 186-190.	1.0	2
63	Ti-Cu-Zr-Fe-Sn-Si-Ag-Pd Bulk Metallic Glasses with Potential for Biomedical Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1559-1567.	2.2	2
64	Effect of element Zr in Ti-Zr–Ni-Nb system brazing filler alloys on the microstructure and strength of TiAl/TiAl joints. Welding in the World, Le Soudage Dans Le Monde, 2022, 66, 1437-1446.	2.5	2
65	Ductile Fe-based amorphous alloys with high iron content. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 199-203.	4.9	1
66	Ti–Cu–Zr–Fe–Nb ultrafine structure-dendrite composites with good mechanical properties and biocompatibility. Progress in Natural Science: Materials International, 2013, 23, 557-561.	4.4	1
67	FORMATION OF ICOSAHEDRAL CLUSTERS IN AMORPHOUS Ni - Zr ALLOY. International Journal of Modern Physics B, 2010, 24, 2332-2337.	2.0	0