List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic Regulation of the Cerebellum. , 2022, , 409-428.		0
2	APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain. Molecular Cell, 2022, 82, 90-105.e13.	4.5	4
3	Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature, 2022, 605, 722-727.	13.7	24
4	PIAS1 and TIF1γ collaborate to promote SnoN SUMOylation and suppression of epithelial–mesenchymal transition. Cell Death and Differentiation, 2021, 28, 267-282.	5.0	11
5	Altered neuronal physiology, development, and function associated with a common chromosome 15 duplication involving CHRNA7. BMC Biology, 2021, 19, 147.	1.7	9
6	CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nature Communications, 2021, 12, 5702.	5.8	20
7	The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain. Nature Communications, 2020, 11, 3419.	5.8	33
8	Astrocyte deletion of α2-Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nature Communications, 2020, 11, 6164.	5.8	23
9	Regulation of epithelial-mesenchymal transition and organoid morphogenesis by a novel TGFÎ ² -TCF7L2 isoform-specific signaling pathway. Cell Death and Disease, 2020, 11, 704.	2.7	9
10	Chromatin-Binding Protein PHF6 Regulates Activity-Dependent Transcriptional Networks to Promote Hunger Response. Cell Reports, 2020, 30, 3717-3728.e6.	2.9	6
11	Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. BMC Bioinformatics, 2020, 21, 269.	1.2	47
12	Chromatin Environment and Cellular Context Specify Compensatory Activity of Paralogous MEF2 Transcription Factors. Cell Reports, 2019, 29, 2001-2015.e5.	2.9	19
13	Sensorimotor Coding of Vermal Granule Neurons in the Developing Mammalian Cerebellum. Journal of Neuroscience, 2019, 39, 6626-6643.	1.7	14
14	Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Current Opinion in Neurobiology, 2019, 59, 59-68.	2.0	40
15	Sensory experience remodels genome architecture in neural circuit to drive motor learning. Nature, 2019, 569, 708-713.	13.7	66
16	Conditional knockout of UBC13 produces disturbances in gait and spontaneous locomotion and exploration in mice. Scientific Reports, 2019, 9, 4379.	1.6	6
17	Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Molecular Autism, 2019, 10, 51.	2.6	14
18	The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. Journal of Neuroscience, 2019, 39, 44-62.	1.7	12

#	Article	IF	CITATIONS
19	Epigenetic Regulation of the Cerebellum. , 2019, , 1-20.		1
20	Palladin Is a Neuron-Specific Translational Target of mTOR Signaling That Regulates Axon Morphogenesis. Journal of Neuroscience, 2018, 38, 4985-4995.	1.7	13
21	Characterization of a Mouse Model of Börjeson-Forssman-Lehmann Syndrome. Cell Reports, 2018, 25, 1404-1414.e6.	2.9	19
22	RNF8/UBC13 ubiquitin signaling suppresses synapse formation in the mammalian brain. Nature Communications, 2017, 8, 1271.	5.8	44
23	Targeting OSMR in glioma stem cells. Oncotarget, 2017, 8, 16103-16104.	0.8	9
24	Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nature Neuroscience, 2016, 19, 798-806.	7.1	82
25	Pathogenesis of Börjeson-Forssman-Lehmann syndrome: Insights from PHF6 function. Neurobiology of Disease, 2016, 96, 227-235.	2.1	26
26	Chromatin remodeling inactivates activity genes and regulates neural coding. Science, 2016, 353, 300-305.	6.0	96
27	A decade of the anaphase-promoting complex in the nervous system. Genes and Development, 2016, 30, 622-638.	2.7	27
28	Regulation of Neuronal Morphogenesis and Positioning by Ubiquitin-Specific Proteases in the Cerebellum. PLoS ONE, 2015, 10, e0117076.	1.1	16
29	Regulation of dendrite morphogenesis by extrinsic cues. Trends in Neurosciences, 2015, 38, 439-447.	4.2	67
30	A Cdh1-APC/FMRP Ubiquitin Signaling Link Drives mGluR-Dependent Synaptic Plasticity in the Mammalian Brain. Neuron, 2015, 86, 726-739.	3.8	55
31	TIF1Î ³ Protein Regulates Epithelial-Mesenchymal Transition by Operating as a Small Ubiquitin-like Modifier (SUMO) E3 Ligase for the Transcriptional Regulator SnoN1. Journal of Biological Chemistry, 2014, 289, 25067-25078.	1.6	32
32	Cell intrinsic control of axon regeneration. EMBO Reports, 2014, 15, 254-263.	2.0	135
33	An α2-Na/K ATPase/α-adducin complex in astrocytes triggers non–cell autonomous neurodegeneration. Nature Neuroscience, 2014, 17, 1710-1719.	7.1	46
34	Promoter Decommissioning by the NuRD Chromatin Remodeling Complex Triggers Synaptic Connectivity in the Mammalian Brain. Neuron, 2014, 83, 122-134.	3.8	92
35	The Ubiquitin Receptor S5a/Rpn10 Links Centrosomal Proteasomes with Dendrite Development in the Mammalian Brain. Cell Reports, 2013, 4, 19-30.	2.9	36
36	Molecular Control of Axon Branching. Neuroscientist, 2013, 19, 16-24.	2.6	36

#	Article	IF	CITATIONS
37	A Novel Hap1–Tsc1 Interaction Regulates Neuronal mTORC1 Signaling and Morphogenesis in the Brain. Journal of Neuroscience, 2013, 33, 18015-18021.	1.7	16
38	Cell-intrinsic drivers of dendrite morphogenesis. Development (Cambridge), 2013, 140, 4657-4671.	1.2	87
39	Spatial organization of ubiquitin ligase pathways orchestrates neuronal connectivity. Trends in Neurosciences, 2013, 36, 218-226.	4.2	47
40	Sumoylated MEF2A Coordinately Eliminates Orphan Presynaptic Sites and Promotes Maturation of Presynaptic Boutons. Journal of Neuroscience, 2013, 33, 4726-4740.	1.7	32
41	The X-Linked Intellectual Disability Protein PHF6 Associates with the PAF1 Complex and Regulates Neuronal Migration in the Mammalian Brain. Neuron, 2013, 78, 986-993.	3.8	89
42	Identification of a Novel Link between the Protein Kinase NDR1 and TGFβ Signaling in Epithelial Cells. PLoS ONE, 2013, 8, e67178.	1.1	23
43	FoxO6 regulates memory consolidation and synaptic function. Genes and Development, 2012, 26, 2780-2801.	2.7	116
44	FLEXIQinase, a mass spectrometry–based assay, to unveil multikinase mechanisms. Nature Methods, 2012, 9, 504-508.	9.0	26
45	STAT3-iNOS Signaling Mediates EGFRvIII-Induced Glial Proliferation and Transformation. Journal of Neuroscience, 2012, 32, 7806-7818.	1.7	40
46	SnoN signaling in proliferating cells and postmitotic neurons. FEBS Letters, 2012, 586, 1977-1983.	1.3	21
47	A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain. Nature Neuroscience, 2011, 14, 973-983.	7.1	72
48	An Isoform-Specific SnoN1-FOXO1 Repressor Complex Controls Neuronal Morphogenesis and Positioning in the Mammalian Brain. Neuron, 2011, 69, 930-944.	3.8	34
49	Transcriptional Regulation of Neuronal Polarity and Morphogenesis in the Mammalian Brain. Neuron, 2011, 72, 22-40.	3.8	104
50	Novel functions for the anaphase-promoting complex in neurobiology. Seminars in Cell and Developmental Biology, 2011, 22, 586-594.	2.3	34
51	A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes and Development, 2011, 25, 2659-2673.	2.7	60
52	An OBSL1-Cul7Fbxw8 Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning. PLoS Biology, 2011, 9, e1001060.	2.6	82
53	The dynamic ubiquitin ligase duo: Cdh1-APC and Cdc20-APC regulate neuronal morphogenesis and connectivity. Current Opinion in Neurobiology, 2010, 20, 92-99.	2.0	58
54	A FOXO–Pak1 transcriptional pathway controls neuronal polarity. Genes and Development, 2010, 24, 799-813.	2.7	83

#	Article	IF	CITATIONS
55	A JIP3-Regulated GSK3β/DCX Signaling Pathway Restricts Axon Branching. Journal of Neuroscience, 2010, 30, 16766-16776.	1.7	51
56	A Cdc20-APC Ubiquitin Signaling Pathway Regulates Presynaptic Differentiation. Science, 2009, 326, 575-578.	6.0	107
57	Cystatin B Deficiency Sensitizes Neurons to Oxidative Stress in Progressive Myoclonus Epilepsy, EPM1. Journal of Neuroscience, 2009, 29, 5910-5915.	1.7	125
58	Regulation of Cdh1–APC Function in Axon Growth by Cdh1 Phosphorylation. Journal of Neuroscience, 2009, 29, 4322-4327.	1.7	31
59	A SnoN–Ccd1 Pathway Promotes Axonal Morphogenesis in the Mammalian Brain. Journal of Neuroscience, 2009, 29, 4312-4321.	1.7	56
60	Regulation of Neuronal Cell Death by MST1-FOXO1 Signaling. Journal of Biological Chemistry, 2009, 284, 11285-11292.	1.6	153
61	A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nature Structural and Molecular Biology, 2009, 16, 945-952.	3.6	75
62	A Centrosomal Cdc20-APC Pathway Controls Dendrite Morphogenesis in Postmitotic Neurons. Cell, 2009, 136, 322-336.	13.5	177
63	STAT3 Regulation of Glioblastoma Pathogenesis. Current Molecular Medicine, 2009, 9, 580-590.	0.6	103
64	SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging. Cell, 2008, 135, 907-918.	13.5	756
65	ING2 as a Novel Mediator of Transforming Growth Factor-β-dependent Responses in Epithelial Cells. Journal of Biological Chemistry, 2008, 283, 13269-13279.	1.6	53
66	Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes and Development, 2008, 22, 449-462.	2.7	296
67	Deregulation of a STAT3-Interleukin 8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness. Journal of Neuroscience, 2008, 28, 5870-5878.	1.7	149
68	Activation of FOXO1 by Cdk1 in Cycling Cells and Postmitotic Neurons. Science, 2008, 319, 1665-1668.	6.0	167
69	Cultures of Cerebellar Granule Neurons. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5107.	0.2	50
70	TGFÎ ² -Smad2 Signaling Regulates the Cdh1-APC/SnoN Pathway of Axonal Morphogenesis. Journal of Neuroscience, 2008, 28, 1961-1969.	1.7	81
71	Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proceedings of the United States of America, 2007, 104, 9882-9887.	3.3	69
72	Pin1 in Neuronal Apoptosis. Cell Cycle, 2007, 6, 1332-1335.	1.3	23

#	Article	IF	CITATIONS
73	PIASx Is a MEF2 SUMO E3 Ligase That Promotes Postsynaptic Dendritic Morphogenesis. Journal of Neuroscience, 2007, 27, 10037-10046.	1.7	69
74	The X-Linked Mental Retardation Gene SMCX/JARID1C Defines a Family of Histone H3 Lysine 4 Demethylases. Cell, 2007, 128, 1077-1088.	13.5	624
75	Thinking within the D box: Initial identification of Cdh1–APC substrates in the nervous system. Molecular and Cellular Neurosciences, 2007, 34, 281-287.	1.0	44
76	A Calcium-Regulated MEF2 Sumoylation Switch Controls Postsynaptic Differentiation. Science, 2006, 311, 1012-1017.	6.0	411
77	A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span. Cell, 2006, 125, 987-1001.	13.5	758
78	Pin1 Mediates Neural-Specific Activation of the Mitochondrial Apoptotic Machinery. Neuron, 2006, 49, 655-662.	3.8	73
79	Cell-Intrinsic Regulation of Axonal Morphogenesis by the Cdh1-APC Target SnoN. Neuron, 2006, 50, 389-400.	3.8	156
80	Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 2006, 442, 471-474.	13.7	270
81	Modeling Oxidative Stress in the Central Nervous System. Current Molecular Medicine, 2006, 6, 871-881.	0.6	40
82	p38 MAP Kinase Mediates Apoptosis through Phosphorylation of BimEL at Ser-65. Journal of Biological Chemistry, 2006, 281, 25215-25222.	1.6	195
83	Bim Regulation of Lumen Formation in Cultured Mammary Epithelial Acini Is Targeted by Oncogenes. Molecular and Cellular Biology, 2005, 25, 4591-4601.	1.1	130
84	The Transcription Factor NFAT3 Mediates Neuronal Survival. Journal of Biological Chemistry, 2005, 280, 2818-2825.	1.6	112
85	Phosphorylation of BAD at Ser-128 during mitosis and paclitaxel-induced apoptosis. FEBS Letters, 2005, 579, 3090-3094.	1.3	25
86	Moving past proliferation: new roles for Cdh1–APC in postmitotic neurons. Trends in Neurosciences, 2005, 28, 596-601.	4.2	36
87	Beyond proliferation—cell cycle control of neuronal survival and differentiation in the developing mammalian brain. Seminars in Cell and Developmental Biology, 2005, 16, 439-448.	2.3	33
88	Brawn for Brains: The Role of MEF2 Proteins in the Developing Nervous System. Current Topics in Developmental Biology, 2005, 69, 239-266.	1.0	72
89	Cdh1-APC Controls Axonal Growth and Patterning in the Mammalian Brain. Science, 2004, 303, 1026-1030.	6.0	338
90	Characterization of the c-Jun N-Terminal Kinase-BimEL Signaling Pathway in Neuronal Apoptosis. Journal of Neuroscience, 2004, 24, 8762-8770.	1.7	108

#	Article	IF	CITATIONS
91	A CaMKII-NeuroD Signaling Pathway Specifies Dendritic Morphogenesis. Neuron, 2004, 41, 229-241.	3.8	235
92	Neurodegeneration: A Non-Apoptotic Role for AIF in the Brain. Current Biology, 2003, 13, R19-R21.	1.8	12
93	Characterization of a Neurotrophin Signaling Mechanism that Mediates Neuron Survival in a Temporally Specific Pattern. Journal of Neuroscience, 2003, 23, 7326-7336.	1.7	95
94	The E2F–Cdc2 Cell-Cycle Pathway Specifically Mediates Activity Deprivation-Induced Apoptosis of Postmitotic Neurons. Journal of Neuroscience, 2003, 23, 1649-1658.	1.7	98
95	Apoptosis Induced by p75NTR Overexpression Requires Jun Kinase-Dependent Phosphorylation of Bad. Journal of Neuroscience, 2003, 23, 11373-11381.	1.7	156
96	JNK Phosphorylation and Activation of BAD Couples the Stress-activated Signaling Pathway to the Cell Death Machinery. Journal of Biological Chemistry, 2002, 277, 40944-40949.	1.6	212
97	RNA Interference Reveals a Requirement for Myocyte Enhancer Factor 2A in Activity-dependent Neuronal Survival. Journal of Biological Chemistry, 2002, 277, 46442-46446.	1.6	95
98	Cdc2 Phosphorylation of BAD Links the Cell Cycle to the Cell Death Machinery. Molecular Cell, 2002, 9, 1005-1016.	4.5	270
99	Neuronal Activity-Dependent Cell Survival Mediated by Transcription Factor MEF2. Science, 1999, 286, 785-790.	6.0	485
100	Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell, 1999, 96, 857-868.	13.5	5,895
101	Neurotrophin Regulation of Gene Expression. Canadian Journal of Neurological Sciences, 1997, 24, 272-283.	0.3	32
102	L-type Voltage-sensitive Ca2+ Channel Activation Regulates c-fos Transcription at Multiple Levels. Journal of Biological Chemistry, 1995, 270, 4224-4235.	1.6	136
103	Serine 133-Phosphorylated CREB Induces Transcription via a Cooperative Mechanism That May Confer Specificity to Neurotrophin Signals. Molecular and Cellular Neurosciences, 1995, 6, 168-183.	1.0	277
104	Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell, 1994, 77, 713-725.	13.5	730