
Dahyun Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846636/publications.pdf Version: 2024-02-01

	Article	IF	CITATIONS
1	Tuning Ionic Conductivity and Stability of Li ₁₀ GeP ₂ S ₁₂ Solid-State Electrolyte. ECS Meeting Abstracts, 2022, MA2022-01, 212-212.	0.0	0
2	Microbe-Assisted Nanocomposite Anodes for Aqueous Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39195-39204.	8.0	2
3	Carbon-based artificial SEI layers for aqueous lithium-ion battery anodes. RSC Advances, 2020, 10, 674-681.	3.6	23
4	Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films. Applied Sciences (Switzerland), 2020, 10, 4727.	2.5	27
5	Ionic Percolation Networks in Composite Electrodes for All-Solid-State Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 1014-1014.	0.0	0
6	Investigation of Li–O ₂ Battery Performance Integrated with RuO ₂ Inverse Opal Cathodes in DMSO. ACS Applied Energy Materials, 2019, 2, 5109-5115.	5.1	10
7	Flat Monolayer Graphene Cathodes for Li–Oxygen Microbatteries. ACS Applied Materials & Interfaces, 2019, 11, 489-498.	8.0	12
8	Design Criteria of SEI Layers for Lithium-Ion Batteries with Aqueous Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
9	Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes. Scientific Reports, 2017, 7, 45919.	3.3	25
10	Effect of Transition Metal Oxide Cathodes on the Oxygen Evolution Reaction in Li–O ₂ Batteries. Journal of Physical Chemistry C, 2017, 121, 1404-1411.	3.1	13
11	M13 Virus Aerogels as a Scaffold for Functional Inorganic Materials. Advanced Functional Materials, 2017, 27, 1603203.	14.9	37
12	How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes. Journal of the American Chemical Society, 2017, 139, 18670-18680.	13.7	365
13	M13 Virus-Directed Synthesis of Nanostructured Metal Oxides for Lithium–Oxygen Batteries. Nano Letters, 2014, 14, 4837-4845.	9.1	112
14	Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nature Communications, 2013, 4, 2756.	12.8	157
15	Genetically Programming Interfaces between Active Materials, Conductive Pathway and Current Collector in Li-Ion Batteries. ECS Transactions, 2012, 41, 55-64.	0.5	1
16	Graphene Sheets Stabilized on Genetically Engineered M13 Viral Templates as Conducting Frameworks for Hybrid Energy‣torage Materials. Small, 2012, 8, 1006-1011.	10.0	57
17	Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes. Nano Letters, 2010, 10, 2433-2440.	9.1	121