Yulia A Nevzorova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846610/publications.pdf

Version: 2024-02-01

42 papers 1,465 citations

331259 21 h-index 37 g-index

42 all docs 42 docs citations

times ranked

42

2589 citing authors

#	Article	IF	CITATIONS
1	Metabolic-associated fatty liver disease: From simple steatosis toward liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, organized by the Spanish Association for the Study of the Liver (AEEH). GastroenterologAa Y HepatologAa, 2022, 45, 724-734.	0.2	3
2	A Shortcut from Metabolic-Associated Fatty Liver Disease (MAFLD) to Hepatocellular Carcinoma (HCC): c-MYC a Promising Target for Preventative Strategies and Individualized Therapy. Cancers, 2022, 14, 192.	1.7	15
3	Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease. Cancers, 2022, 14, 78.	1.7	3
4	The Space of Disse: The Liver Hub in Health and Disease. Livers, 2021, 1, 3-26.	0.8	23
5	An Experimental DUAL Model of Advanced Liver Damage. Hepatology Communications, 2021, 5, 1051-1068.	2.0	11
6	Liver fibrosis in patients with metabolic associated fatty liver disease is a risk factor for adverse outcomes in COVID-19. Digestive and Liver Disease, 2021, 53, 525-533.	0.4	27
7	Fibrotic Events in the Progression of Cholestatic Liver Disease. Cells, 2021, 10, 1107.	1.8	24
8	Fat: Quality, or Quantity? What Matters Most for the Progression of Metabolic Associated Fatty Liver Disease (MAFLD). Biomedicines, 2021, 9, 1289.	1.4	4
9	Liver Fibrosisâ€"From Mechanisms of Injury to Modulation of Disease. Frontiers in Medicine, 2021, 8, 814496.	1.2	9
10	Pharmacological Inhibition of Cyclin-Dependent Kinases Triggers Anti-Fibrotic Effects in Hepatic Stellate Cells In Vitro. International Journal of Molecular Sciences, 2020, 21, 3267.	1.8	8
11	Recent Advances in Practical Methods for Liver Cell Biology: A Short Overview. International Journal of Molecular Sciences, 2020, 21, 2027.	1.8	10
12	<p>Guidelines and Considerations for Metabolic Tolerance Tests in Mice</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 439-450.	1.1	81
13	Animal models for liver disease – A practical approach for translational research. Journal of Hepatology, 2020, 73, 423-440.	1.8	139
14	Loss of câ€Jun Nâ€ŧerminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma. Hepatology Communications, 2020, 4, 834-851.	2.0	17
15	Intestinal Epithelial Cell-Derived Extracellular Vesicles Modulate Hepatic Injury via the Gut-Liver Axis During Acute Alcohol Injury. Frontiers in Pharmacology, 2020, 11, 603771.	1.6	17
16	THU-018-c-Jun N-terminal kinases act synergistically in hepatocytes to protect mice from cholestatic liver injury. Journal of Hepatology, 2019, 70, e168.	1.8	0
17	$p38\hat{l}^3$ is essential for cell cycle progression and liver tumorigenesis. Nature, 2019, 568, 557-560.	13.7	72
18	Alcoholic liver disease: Utility of animal models. World Journal of Gastroenterology, 2018, 24, 5063-5075.	1.4	101

#	Article	IF	CITATIONS
19	The Lieberâ€DeCarli Diet—A Flagship Model for Experimental Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2018, 42, 1828-1840.	1.4	55
20	Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9282-9287.	3.3	68
21	Anti-tumorigenic and anti-angiogenic effects of natural conifer Abies sibirica terpenoids in vivo and in vitro. Biomedicine and Pharmacotherapy, 2017, 89, 386-395.	2.5	10
22	Inhibition of Caspase-8 does not protect from alcohol-induced liver apoptosis but alleviates alcoholic hepatic steatosis in mice. Cell Death and Disease, 2017, 8, e3152-e3152.	2.7	34
23	c-MYC—Making Liver Sick: Role of c-MYC in Hepatic Cell Function, Homeostasis and Disease. Genes, 2017, 8, 123.	1.0	59
24	Alcohol and Hepatocellular Carcinoma: Adding Fuel to the Flame. Cancers, 2017, 9, 130.	1.7	38
25	Enhanced expression of c-myc in hepatocytes promotes initiation and progression of alcoholic liver disease. Journal of Hepatology, 2016, 64, 628-640.	1.8	29
26	Combined Activities of JNK1 and JNK2 in Hepatocytes Protect Against Toxic Liver Injury. Gastroenterology, 2016, 150, 968-981.	0.6	82
27	Regulation of Cell Cycle During Liver Regeneration. , 2015, , 153-166.		1
28	Partial hepatectomy in mice. Laboratory Animals, 2015, 49, 81-88.	0.5	45
29	Lack of gp130 expression in hepatocytes attenuates tumor progression in the DEN model. Cell Death and Disease, 2015, 6, e1667-e1667.	2.7	25
30	Haematopoietic cell-derived Jnk1 is crucial for chronic inflammation and carcinogenesis in an experimental model of liver injury. Journal of Hepatology, 2015, 62, 140-149.	1.8	20
31	Bone marrow-derived c-jun N-terminal kinase-1 (JNK1) mediates liver regeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 137-145.	1.8	9
32	The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 902-914.	1.9	81
33	Concurrent deletion of cyclin E1 and cyclin-dependent kinase 2 in hepatocytes inhibits DNA replication and liver regeneration in mice. Hepatology, 2014, 59, 651-660.	3.6	41
34	Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut, 2014, 63, 1159-1172.	6.1	47
35	TNFR1 determines progression of chronic liver injury in the $IKK\hat{I}^3/Nemo$ genetic model. Cell Death and Differentiation, 2013, 20, 1580-1592.	5.0	33
36	Overexpression of c-myc in hepatocytes promotes activation of hepatic stellate cells and facilitates the onset of liver fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1765-1775.	1.8	67

3

#	Article	IF	CITATIONS
37	Loss of caspase-8 in hepatocytes accelerates the onset of liver regeneration in mice through premature nuclear factor kappa B activation. Hepatology, 2013, 58, 1779-1789.	3.6	28
38	Liver Regeneration., 2012,, 20-35.		0
39	Cyclin E1 controls proliferation of hepatic stellate cells and is essential for liver fibrogenesis in mice. Hepatology, 2012, 56, 1140-1149.	3.6	50
40	Sh(i)pping signals protect against Stat3-driven liver cancer. Hepatology, 2012, 55, 322-324.	3.6	1
41	Aberrant Cell Cycle Progression and Endoreplication in Regenerating Livers of Mice That Lack a Single E-Type Cyclin. Gastroenterology, 2009, 137, 691-703.e6.	0.6	56
42	Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytesin vivo. Hepatology, 2006, 44, 164-173.	3.6	22