
Alison Woollard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846434/publications.pdf Version: 2024-02-01

ALISON MOOLLARD

#	Article	IF	CITATIONS
1	Extensive non-redundancy in a recently duplicated developmental gene family. Bmc Ecology and Evolution, 2021, 21, 33.	0.7	5
2	H3K27 modifiers regulate lifespan in C. elegans in a context-dependent manner. BMC Biology, 2021, 19, 59.	1.7	17
3	Caudal-dependent cell positioning directs morphogenesis of the C.Âelegans ventral epidermis. Developmental Biology, 2020, 461, 31-42.	0.9	5
4	How Weird is The Worm? Evolution of the Developmental Gene Toolkit in Caenorhabditis elegans. Journal of Developmental Biology, 2019, 7, 19.	0.9	7
5	100 years of genetics. Heredity, 2019, 123, 1-3.	1.2	Ο
6	DnaJ chaperones contribute to canalization. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2019, 331, 201-212.	0.9	6
7	An enhanced C. elegans based platform for toxicity assessment. Scientific Reports, 2017, 7, 9839.	1.6	99
8	Non-muscle myosin II is required for correct fate specification in the Caenorhabditis elegans seam cell divisions. Scientific Reports, 2017, 7, 3524.	1.6	7
9	Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number. PLoS Biology, 2017, 15, e2002429.	2.6	27
10	CACN-1/Cactin Plays a Role in Wnt Signaling in C. elegans. PLoS ONE, 2014, 9, e101945.	1.1	15
11	The C. elegans TPR Containing Protein, TRD-1, Regulates Cell Fate Choice in the Developing Germ Line and Epidermis. PLoS ONE, 2014, 9, e114998.	1.1	7
12	Telling it like it is. ELife, 2014, 3, e04902.	2.8	0
13	The SFT-1 and OXA-1 respiratory chain complex assembly factors influence lifespan by distinct mechanisms in C. elegans. Longevity & Healthspan, 2013, 2, 9.	6.7	6
14	CEH-20/Pbx and UNC-62/Meis function upstream of <i>rnt-1</i> /Runx to regulate asymmetric divisions of the <i>C. elegans</i> stem-like seam cells. Biology Open, 2013, 2, 718-727.	0.6	17
15	Finding a niche for seam cells?. Worm, 2012, 1, 107-111.	1.0	3
16	The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans. Mechanisms of Development, 2011, 128, 49-58.	1.7	4
17	The Caenorhabditis elegans GATA Factor ELT-1 Works through the Cell Proliferation Regulator BRO-1 and the Fusogen EFF-1 to Maintain the Seam Stem-Like Fate. PLoS Genetics, 2011, 7, e1002200.	1.5	37
18	RUNX genes find a niche in stem cell biology. Journal of Cellular Biochemistry, 2009, 108, 14-21.	1.2	27

ALISON WOOLLARD

#	Article	IF	CITATIONS
19	RUNX factors in development: Lessons from invertebrate model systems. Blood Cells, Molecules, and Diseases, 2009, 43, 43-48.	0.6	31
20	Worming out the biology of Runx. Developmental Biology, 2008, 313, 492-500.	0.9	30
21	Neuronal function of Tbx20 conserved from nematodes to vertebrates. Developmental Biology, 2008, 317, 671-685.	0.9	22
22	The <i>C. elegans</i> CBFβ homologue BRO-1 interacts with the Runx factor, RNT-1, to promote stem cell proliferation and self-renewal. Development (Cambridge), 2007, 134, 3905-3915.	1.2	49
23	The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. Developmental Biology, 2006, 295, 664-677.	0.9	54
24	mab-2 encodes RNT-1, a C. elegans Runx homologue essential for controlling cell proliferation in a stem cell-like developmental lineage. Development (Cambridge), 2005, 132, 5043-5054.	1.2	61
25	Gene duplications and genetic redundancy in C. elegans. WormBook, 2005, , 1-6.	5.3	25
26	A regulatory network of T-box genes and the even-skippedhomologue vab-7 controls patterning and morphogenesis in C. elegans. Development (Cambridge), 2004, 131, 2373-2385.	1.2	40
27	Widespread organisation ofC. elegans genes into operons: Fact or function?. BioEssays, 2002, 24, 983-987.	1.2	8