
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7846307/publications.pdf Version: 2024-02-01

HONCOING HU

#	Article	IF	CITATIONS
1	Assessment of goethite modified biochar on the immobilization of cadmium and arsenic and uptake by Chinese cabbage in paddy soil. Archives of Agronomy and Soil Science, 2023, 69, 1039-1054.	1.3	5
2	Biochar production and characterization as a measure for effective rapeseed residue and rice straw management: an integrated spectroscopic examination. Biomass Conversion and Biorefinery, 2022, 12, 2687-2696.	2.9	10
3	Cadmium, lead, and zinc immobilization in soil by rice husk biochar in the presence of low molecular weight organic acids. Environmental Technology (United Kingdom), 2022, 43, 2516-2529.	1.2	13
4	Influence mechanisms of iron, aluminum and manganese oxides on the mineralization of organic matter in paddy soil. Journal of Environmental Management, 2022, 301, 113916.	3.8	12
5	Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil. Environmental Science and Pollution Research, 2022, 29, 40745-40754.	2.7	13
6	Responses of N2O Production and Abundances of Associated Microorganisms to Soil Profiles and Water Regime in Two Paddy Soils. Agronomy, 2022, 12, 743.	1.3	6
7	Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. Science of the Total Environment, 2022, 828, 154494.	3.9	22
8	The inhibiting effects of organic acids on arsenic immobilization by ferrihydrite: Gallic acid as an example. Chemosphere, 2022, 299, 134286.	4.2	7
9	Mineralization of organic matter during the immobilization of heavy metals in polluted soil treated with minerals. Chemosphere, 2022, 301, 134794.	4.2	9
10	Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response. Science of the Total Environment, 2022, 839, 156285.	3.9	8
11	Regulation of soil aggregate size under different fertilizations on dissolved organic matter, cellobiose hydrolyzing microbial community and their roles in organic matter mineralization. Science of the Total Environment, 2021, 755, 142595.	3.9	33
12	Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma, 2021, 385, 114803.	2.3	55
13	Long-term green manure application improves soil K availability in red paddy soil of subtropical China. Journal of Soils and Sediments, 2021, 21, 63-72.	1.5	12
14	Spatial variability of the molecular composition of humic acids from subtropical forest soils. Journal of Soils and Sediments, 2021, 21, 766-774.	1.5	5
15	Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system. Journal of Soils and Sediments, 2021, 21, 2650-2658.	1.5	6
16	Potential of organic and inorganic amendments for stabilizing nickel in acidic soil, and improving the nutritional quality of spinach. Environmental Science and Pollution Research, 2021, 28, 57769-57780.	2.7	4
17	Long-term partial substitution of chemical fertilizer with green manure regulated organic matter mineralization in paddy soil dominantly by modulating organic carbon quality. Plant and Soil, 2021, 468, 459-473.	1.8	13
18	Effect of P/As molar ratio in soil porewater on competitive uptake of As and P in As sensitive and tolerant rice genotypes. Science of the Total Environment, 2021, 797, 149185.	3.9	5

#	Article	IF	CITATIONS
19	Risk of Secondary Soil Salinization under Mixed Irrigation Using Brackish Water and Reclaimed Water. Agronomy, 2021, 11, 2039.	1.3	7
20	High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars. Science of the Total Environment, 2020, 699, 134262.	3.9	54
21	Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stresses. Journal of Environmental Sciences, 2020, 88, 209-216.	3.2	19
22	Comparative effects on arsenic uptake between iron (hydro)oxides on root surface and rhizosphere of rice in an alkaline paddy soil. Environmental Science and Pollution Research, 2020, 27, 6995-7004.	2.7	10
23	Role of sepiolite for cadmium (Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil. Journal of Environmental Management, 2020, 258, 110020.	3.8	53
24	Influence of nitrogen forms and application rates on the phytoextraction of copper by castor bean (Ricinus communis L.). Environmental Science and Pollution Research, 2020, 27, 647-656.	2.7	8
25	Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acidic Ni contaminated soil. Journal of Environmental Management, 2020, 259, 109674.	3.8	27
26	Rice straw, biochar and calcite incorporation enhance nickel (Ni) immobilization in contaminated soil and Ni removal capacity. Chemosphere, 2020, 244, 125418.	4.2	49
27	Optimation for preparation of oligosaccharides from flaxseed gum and evaluation of antioxidant and antitumor activities in vitro. International Journal of Biological Macromolecules, 2020, 153, 1107-1116.	3.6	14
28	Effects of low molecular weight organic acids on Cu accumulation by castor bean and soil enzyme activities. Ecotoxicology and Environmental Safety, 2020, 203, 110983.	2.9	36
29	Efficiency of KOH-modified rice straw-derived biochar for reducing cadmium mobility, bioaccessibility and bioavailability risk index in red soil. Pedosphere, 2020, 30, 874-882.	2.1	41
30	Phosphorus regulates As uptake by rice via releasing As into soil porewater and sequestrating it on Fe plaque. Science of the Total Environment, 2020, 738, 139869.	3.9	22
31	The relative contribution of ammonia oxidizing bacteria and archaea to N2O emission from two paddy soils with different fertilizer N sources: A microcosm study. Geoderma, 2020, 375, 114486.	2.3	32
32	Biological-chemical comprehensive effects of goethite addition on nitrous oxide emissions in paddy soils. Journal of Soils and Sediments, 2020, 20, 3580-3590.	1.5	7
33	Biochar Improves the Growth Performance of Maize Seedling in Response to Antimony Stress. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
34	Coupling phytoremediation efficiency and detoxification to assess the role of P in the Cu tolerant Ricinus communis L Chemosphere, 2020, 247, 125965.	4.2	23
35	Comparative study on adsorption and immobilization of Cd(II) by rape component biomass. Environmental Science and Pollution Research, 2020, 27, 8028-8033.	2.7	5
36	Preparation, characterization, and Cd(II) sorption of/on cysteine-montmorillonite composites synthesized at various pH. Environmental Science and Pollution Research, 2020, 27, 10599-10606.	2.7	5

#	Article	IF	CITATIONS
37	Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry. Science of the Total Environment, 2020, 730, 139119.	3.9	108
38	Variations of dissolved organic matter and Cu fractions in rhizosphere soil induced by the root activities of castor bean. Chemosphere, 2020, 254, 126800.	4.2	34
39	Comparative study of the adsorption/immobilization of Cu by turmeric residues after microbial and chemical extraction. Science of the Total Environment, 2019, 691, 1082-1088.	3.9	8
40	Influence of Various Passivators for Nickel Immobilization in Contaminated Soil of China. Environmental Engineering Science, 2019, 36, 1396-1403.	0.8	7
41	Water management of alternate wetting and drying reduces the accumulation of arsenic in brown rice - as dynamic study from rhizosphere soil to rice. Ecotoxicology and Environmental Safety, 2019, 185, 109711.	2.9	22
42	Biochar induced Pb and Cu immobilization, phytoavailability attenuation in Chinese cabbage, and improved biochemical properties in naturally co-contaminated soil. Journal of Soils and Sediments, 2019, 19, 2381-2392.	1.5	39
43	Two years impacts of rapeseed residue and rice straw biochar on Pb and Cu immobilization and revegetation of naturally co-contaminated soil. Applied Geochemistry, 2019, 105, 97-104.	1.4	25
44	Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils. Ecotoxicology and Environmental Safety, 2019, 174, 401-407.	2.9	33
45	Influence of low molecular weight anionic ligands on the sorption of heavy metals by soil constituents: a review. Environmental Chemistry Letters, 2019, 17, 1271-1280.	8.3	23
46	Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. Journal of Hazardous Materials, 2019, 371, 191-197.	6.5	110
47	Effective Role of Biochar, Zeolite and Steel Slag on Leaching Behavior of Cd and Its Fractionations in Soil Column Study. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 567-572.	1.3	13
48	Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. Journal of Environmental Management, 2019, 237, 5-14.	3.8	56
49	Co-Pyrolysis Biochar Derived from Rape Straw and Phosphate Rock: Carbon Retention, Aromaticity, and Pb Removal Capacity. Energy & Fuels, 2019, 33, 413-419.	2.5	41
50	Sorption and immobilization of Cu and Pb in a red soil (Ultisol) after different long-term fertilizations. Environmental Science and Pollution Research, 2019, 26, 1716-1722.	2.7	4
51	Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Research International, 2019, 116, 1202-1211.	2.9	120
52	Cadmium Immobilization Potential of Rice Straw-Derived Biochar, Zeolite and Rock Phosphate: Extraction Techniques and Adsorption Mechanism. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 727-732.	1.3	51
53	Structure and biodegradability of dissolved organic matter from Ultisol treated with long-term fertilizations. Journal of Soils and Sediments, 2018, 18, 1865-1872.	1.5	29
54	Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environmental Science and Pollution Research, 2018, 25, 11875-11883.	2.7	149

#	Article	IF	CITATIONS
55	Efficiency of C3 and C4 Plant Derived-Biochar for Cd Mobility, Nutrient Cycling and Microbial Biomass in Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 834-838.	1.3	48
56	Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. Journal of Soils and Sediments, 2018, 18, 2948-2959.	1.5	45
57	Effects of exogenous sulfur on growth and Cd uptake in Chinese cabbage (Brassica campestris spp.) Tj ETQq1 15823-15829.	1 0.784314 2.7	rgBT /Over 16
58	Influence of phosphorous fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.). Environmental Science and Pollution Research, 2018, 25, 115-123.	2.7	30
59	Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere, 2018, 194, 579-587.	4.2	162
60	The short-term effects of nitrification inhibitors on the abundance and expression of ammonia and nitrite oxidizers in a long-term field experiment comparing land management. Biology and Fertility of Soils, 2018, 54, 163-172.	2.3	30
61	Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. Journal of Soils and Sediments, 2018, 18, 874-886.	1.5	114
62	Comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by Chinese cabbage in highly contaminated soil. International Journal of Phytoremediation, 2018, 20, 1221-1228.	1.7	30
63	Biochars Immobilize Lead and Copper in Naturally Contaminated Soil. Environmental Engineering Science, 2018, 35, 1349-1360.	0.8	26
64	Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere, 2018, 211, 632-639.	4.2	95
65	Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite: Kinetic, thermodynamic and equilibrium studies. Applied Clay Science, 2017, 143, 320-326.	2.6	138
66	The effect of pH on the bonding of Cu 2+ and chitosan-montmorillonite composite. International Journal of Biological Macromolecules, 2017, 103, 751-757.	3.6	10
67	Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals. Journal of Environmental Management, 2017, 200, 304-311.	3.8	22
68	Effects of sulfur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil. Environmental Science and Pollution Research, 2017, 24, 27476-27483.	2.7	20
69	Characterization and Cu sorption properties of humic acid from the decomposition of rice straw. Environmental Science and Pollution Research, 2017, 24, 23744-23752.	2.7	7
70	Accumulation and distribution of copper in castor bean (Ricinus communis L.) callus cultures: in vitro. Plant Cell, Tissue and Organ Culture, 2017, 128, 177-186.	1.2	16
71	MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum. PLoS Pathogens, 2016, 12, e1005423.	2.1	64
72	Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Environmental Science and Pollution Research, 2016, 23, 16845-16856.	2.7	75

#	Article	IF	CITATIONS
73	Sorption of Cu by organic matter from the decomposition of rice straw. Journal of Soils and Sediments, 2016, 16, 2203-2210.	1.5	12
74	Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environmental Science and Pollution Research, 2016, 23, 15532-15543.	2.7	47
75	Adsorption of Cu2+ on Montmorillonite and Chitosan-Montmorillonite Composite Toward Acetate Ligand and the pH Dependence. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	6
76	Efficiency of several leaching reagents on removal of Cu, Pb, Cd, and Zn from highly contaminated paddy soil. Environmental Science and Pollution Research, 2016, 23, 23271-23280.	2.7	18
77	Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against <i>Fusarium graminearum</i> for Crop Disease Prevention. ACS Applied Materials & Interfaces, 2016, 8, 24057-24070.	4.0	126
78	Adsorption and intercalation of low and medium molar mass chitosans on/in the sodium montmorillonite. International Journal of Biological Macromolecules, 2016, 92, 1191-1196.	3.6	27
79	Effects of phosphate and citric acid on Pb adsorption by red soil colloids. Environmental Progress and Sustainable Energy, 2016, 35, 969-974.	1.3	11
80	Targeted Near-Infrared Fluorescent Turn-on Nanoprobe for Activatable Imaging and Effective Phototherapy of Cancer Cells. ACS Applied Materials & Interfaces, 2016, 8, 15013-15023.	4.0	69
81	Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environmental Technology (United Kingdom), 2016, 37, 2679-2686.	1.2	32
82	Phosphate adsorption on uncoated and humic acid-coated iron oxides. Journal of Soils and Sediments, 2016, 16, 1911-1920.	1.5	46
83	Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (<i>Ricinus communis</i> L.) Under Cu stress. International Journal of Phytoremediation, 2016, 18, 33-40.	1.7	51
84	Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Journal of Environmental Sciences, 2015, 28, 64-73.	3.2	37
85	Adsorption of phosphate on pure and humic acid-coated ferrihydrite. Journal of Soils and Sediments, 2015, 15, 1500-1509.	1.5	15
86	Quantum dots decorated gold nanorod as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosensors and Bioelectronics, 2015, 74, 16-23.	5.3	50
87	Immobilization and phytotoxicity of Pb in contaminated soil amended with γ-polyglutamic acid, phosphate rock, and γ-polyglutamic acid-activated phosphate rock. Environmental Science and Pollution Research, 2015, 22, 2661-2667.	2.7	12
88	Immobilization of soil exogenous lead using raw and activated phosphate rocks. Environmental Progress and Sustainable Energy, 2014, 33, 81-86.	1.3	3
89	Evaluation of protective immune response in mice by vaccination the recombinant adenovirus for expressing Schistosoma japonicum inhibitor apoptosis protein. Parasitology Research, 2014, 113, 4261-4269.	0.6	10
90	Sorption of humic acid on Fe oxides, bacteria, and Fe oxide-bacteria composites. Journal of Soils and Sediments, 2014, 14, 1378-1384.	1.5	17

#	Article	IF	CITATIONS
91	Impacts of inorganic ions and temperature on lead adsorption onto variable charge soils. Catena, 2013, 109, 103-109.	2.2	17
92	Mechanism of lead immobilization by oxalic acid-activated phosphate rocks. Journal of Environmental Sciences, 2012, 24, 919-925.	3.2	39
93	Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite. Applied Clay Science, 2010, 49, 281-287.	2.6	45
94	Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals. Applied Surface Science, 2009, 255, 4551-4557.	3.1	61
95	Characteristics of Iron-Manganese Cutans and Matrices in Alfisols and Ultisols of Subtropical China. Soil Science, 2009, 174, 238-246.	0.9	4
96	Adsorption of the insecticidal protein of <i>Bacillus thuringiensis</i> subsp. <i>kurstaki</i> by minerals: effects of inorganic salts. European Journal of Soil Science, 2008, 59, 216-221.	1.8	7
97	Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by soil minerals: Effects of organic acid ligands. Applied Clay Science, 2007, 37, 201-206.	2.6	16
98	Composition and transformation of 1.4 nm minerals in cutan and matrix of alfisols in central China. Journal of Soils and Sediments, 2007, 7, 240-246.	1.5	19
99	Adsorption of insecticidal toxin from Bacillus thuringiensis subsp. Kurstaki by some Chinese soils: effects of organic acid ligands addition. Plant and Soil, 2007, 296, 35-41.	1.8	11
100	Secondary Adsorption of Phosphate on Aluminum Oxides Surfaces as Influenced by Several Organic Acids. Journal of Plant Nutrition, 2004, 27, 637-649.	0.9	1
101	Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International, 2003, 29, 613-618.	4.8	135