Vidal Fey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7845584/publications.pdf

Version: 2024-02-01

567281 752698 1,304 20 15 20 citations h-index g-index papers 20 20 20 2447 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Retrograde Plastid Redox Signals in the Expression of Nuclear Genes for Chloroplast Proteins of Arabidopsis thaliana. Journal of Biological Chemistry, 2005, 280, 5318-5328.	3.4	203
2	High-Throughput Cell-Based Screening of 4910 Known Drugs and Drug-like Small Molecules Identifies Disulfiram as an Inhibitor of Prostate Cancer Cell Growth. Clinical Cancer Research, 2009, 15, 6070-6078.	7.0	185
3	High-Throughput 3D Screening Reveals Differences in Drug Sensitivities between Culture Models of JIMT1 Breast Cancer Cells. PLoS ONE, 2013, 8, e77232.	2.5	154
4	Photosynthetic redox control of nuclear gene expression. Journal of Experimental Botany, 2005, 56, 1491-1498.	4.8	134
5	Arachidonic Acid Pathway Members PLA2G7, HPGD, EPHX2, and CYP4F8 Identified as Putative Novel Therapeutic Targets in Prostate Cancer. American Journal of Pathology, 2011, 178, 525-536.	3.8	102
6	Chloroplast Redox Control of Nuclear Gene Expression—A New Class of Plastid Signals in Interorganellar Communication. Antioxidants and Redox Signaling, 2003, 5, 95-101.	5.4	81
7	Monensin Is a Potent Inducer of Oxidative Stress and Inhibitor of Androgen Signaling Leading to Apoptosis in Prostate Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 3175-3185.	4.1	80
8	Identification of MicroRNAs Inhibiting TGF- \hat{l}^2 -Induced IL-11 Production in Bone Metastatic Breast Cancer Cells. PLoS ONE, 2012, 7, e37361.	2.5	72
9	High-Throughput Transcriptomic and RNAi Analysis Identifies AIM1, ERGIC1, TMED3 and TPX2 as Potential Drug Targets in Prostate Cancer. PLoS ONE, 2012, 7, e39801.	2.5	54
10	The Role of Phosphorylation in Redox Regulation of Photosynthesis Genes psaA and psbA during Photosynthetic Acclimation of Mustard. Molecular Plant, 2009, 2, 416-429.	8.3	53
11	Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget, 2015, 6, 43182-43201.	1.8	36
12	A New Simple Cell-Based Homogeneous Time-Resolved Fluorescence QRET Technique for Receptor-Ligand Interaction Screening. Journal of Biomolecular Screening, 2009, 14, 936-943.	2.6	35
13	ANO7 is associated with aggressive prostate cancer. International Journal of Cancer, 2018, 143, 2479-2487.	5.1	31
14	Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget, 2016, 7, 60310-60331.	1.8	31
15	A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability. Oncotarget, 2016, 7, 28510-28522.	1.8	15
16	High-throughput RNAi screen in Ewing sarcoma cells identifies leucine rich repeats and WD repeat domain containing 1 (LRWD1) as a regulator of EWS-FLI1 driven cell viability. Gene, 2017, 596, 137-146.	2.2	13
17	Identifying the druggable interactome of EWS-FLI1 reveals MCL-1 dependent differential sensitivities of Ewing sarcoma cells to apoptosis inducers. Oncotarget, 2018, 9, 31018-31031.	1.8	10
18	High-throughput cell-based compound screen identifies pinosylvin methyl ether and tanshinone IIA as inhibitors of castration-resistant prostate cancer. Journal of Molecular Biochemistry, 2016, 5, 12-22.	0.1	7

#	Article	IF	CITATIONS
19	BioCPR–A Tool for Correlation Plots. Data, 2021, 6, 97.	2.3	4
20	Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. Vol. 280 (2005) 5318–5328. Journal of Biological Chemistry, 2005, 280, 17572.	3.4	4