Georges Landa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/784545/publications.pdf

Version: 2024-02-01

65 1,087 18 30 g-index

66 66 66 1165

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Enhancing DFT-based energy landscape exploration by coupling Quantum Mechanics and Static Modes. Physical Chemistry Chemical Physics, 2022, 24, 12011-12026.	1.3	O
2	Finding Reaction Pathways and Transition States: r-ARTn and d-ARTn as an Efficient and Versatile Alternative to String Approaches. Journal of Chemical Theory and Computation, 2020, 16, 6726-6734.	2.3	21
3	Water Distribution within Wild-Type NRas Protein and Q61 Mutants during Unrestrained QM/MM Dynamics. Biophysical Journal, 2018, 115, 1417-1430.	0.2	10
4	A perfect wetting of Mg monolayer on Ag(111) under atomic scale investigation: First principles calculations, scanning tunneling microscopy, and Auger spectroscopy. Journal of Chemical Physics, 2016, 144, 194708.	1.2	1
5	Toward in Silico Biomolecular Manipulation through Static Modes: Atomic Scale Characterization of HIV-1 Protease Flexibility. Journal of Physical Chemistry B, 2014, 118, 2821-2830.	1.2	2
6	Bringing aptamers into technologies: Impact of spacer terminations. Applied Physics Letters, 2012, 100 , .	1.5	4
7	Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology. IOP Conference Series: Materials Science and Engineering, 2012, 41, 012007.	0.3	9
8	A computational chemist approach to gas sensors: Modeling the response of SnO ₂ to CO, O ₂ , and H ₂ O Gases. Journal of Computational Chemistry, 2012, 33, 247-258.	1.5	42
9	Tail effect on trihydroxysilanes dimerization: A dispersion-corrected density functional theory study. Surface Science, 2012, 606, 7-11.	0.8	2
10	Mimicking DNA stretching with the Static Mode method: Shear stress versus transverse pulling stress. European Physical Journal E, 2012, 35, 75.	0.7	3
11	Introducing densification mechanisms into the modelling of HfO2 atomic layer deposition. Thin Solid Films, 2012, 520, 4559-4563.	0.8	10
12	The electrostatic probe: a tool for the investigation of the $\hat{A}^2(1\hat{a}\in 16)$ peptide deformations using the static modes. Physical Chemistry Chemical Physics, 2011, 13, 14611.	1.3	2
13	Atomic Scale Determination of Enzyme Flexibility and Active Site Stability through Static Modes: Case of Dihydrofolate Reductase. Journal of Physical Chemistry B, 2011, 115, 1616-1622.	1.2	6
14	Stability of Frenkel pairs in Si(100) surface in the presence of germanium and oxygen atoms. Microelectronic Engineering, 2011, 88, 503-505.	1.1	0
15	Atomic-scale determination of DNA conformational response to strained furanose: a static mode approach. Tetrahedron, 2010, 66, 9123-9128.	1.0	4
16	Deformation of thiolated nucleic acid deposited on a silicon surface: A Static Mode approach. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 23-27.	1.7	4
17	A mesoscopic model of the intermixing during nanoenergetic materials processing. Journal of Physics and Chemistry of Solids, 2010, 71, 125-129.	1.9	5
18	Periodic boundary versus quantum cluster approaches in the simulation of a nanoenergetic metallic model-system: Ni/Al(111) surface reactions. Journal of Physics and Chemistry of Solids, 2010, 71, 130-133.	1.9	3

#	Article	IF	Citations
19	First-principles study of near surface point defects stability in Si (100) and SiGe(100). Thin Solid Films, 2010, 518, 2418-2421.	0.8	3
20	Asymmetric diffusion as a key mechanism in Ni/Al energetic multilayer processing: A first principles study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, L15-L17.	0.9	16
21	A kinetic Monte Carlo study of the initial stage of silicon oxidation: Basic mechanisms-induced partial ordering of the oxide interfacial layer. Surface Science, 2009, 603, 2132-2137.	0.8	12
22	Evidence of the Ge nonreactivity during the initial stage of SiGe oxidation. Applied Physics Letters, 2009, 94, 041912.	1.5	10
23	The Static Modes: An alternative approach for the treatment of macro- and bio-molecular induced-fit flexibility. European Physical Journal E, 2009, 28, 17-25.	0.7	7
24	Evidence of Self-Assembled Monolayers Preorganization Prior to Surface Contact: a First Principles Study. Journal of Physical Chemistry C, 2009, 113, 15652-15657.	1.5	6
25	Insights into Crystalline Preorganization of Gas-Phase Precursors: Densification Mechanisms. Chemistry of Materials, 2008, 20, 1555-1560.	3.2	18
26	A new insight into the understanding of the collapsed form of poly(N-isopropylacrylamide) molecules. Chemical Physics, 2007, 340, 12-16.	0.9	8
27	Substrate size effects in the modeling of molecular grafting: Case of organo-silane chains on silica. Chemical Physics, 2006, 323, 179-184.	0.9	11
28	Nanoscale pressure effects in individual double-wall carbon nanotubes. Physical Review B, 2006, 73, .	1.1	32
29	Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites. Journal of Applied Physics, 2005, 97, 034303.	1.1	26
30	Role of the substrate imperfections on the island nucleation and defect formation: case of GaSb/GaAs(001). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 181-185.	1.7	5
31	Kinetic Monte Carlo simulation of intermixing during semiconductor heteroepitaxy. Applied Surface Science, 2002, 188, 24-28.	3.1	3
32	Ge clusters in Si matrix: structure and dynamics. European Physical Journal B, 1999, 12, 343-346.	0.6	3
33	Dislocation half loop formation in GaSb/(001)GaAs islands and steps role: a Monte Carlo simulation. Thin Solid Films, 1998, 336, 277-280.	0.8	2
34	Beyond the solid on solid model: An atomic dislocation formation mechanism. Journal of Applied Physics, 1998, 84, 5487-5494.	1.1	14
35	Optical-phonon behavior inGa1â^xlnxAs:The role of microscopic strains and ionic plasmon coupling. Physical Review B, 1998, 58, 10452-10462.	1.1	101
36	Strain effects on optical phonons in ã€^111〉 GaAs layers analyzed by Raman scattering. Journal of Applied Physics, 1997, 82, 4493-4499.	1.1	17

#	Article	IF	CITATIONS
37	Tensile and compressive strain relief in InxGa1â^'xAs epilayers grown on InP probed by Raman scattering. Journal of Applied Physics, 1997, 82, 803-809.	1.1	55
38	MBE growth and Raman analysis of [hhk]GaAs/(Si or CaF2) highly strained hetero-structures. Microelectronics Journal, 1995, 26, 789-795.	1.1	6
39	Strain relaxation in [001]―and [111]â€GaAs/CaF2analyzed by Raman spectroscopy. Journal of Applied Physics, 1995, 77, 1126-1132.	1.1	17
40	Raman scattering study of [hhk]â€GaAs/(Si or CaF2) strained heterostructures. Journal of Applied Physics, 1994, 76, 2773-2780.	1.1	12
41	Long-wavelength optical phonons of CdxZn1-xSb mixed crystals. Semiconductor Science and Technology, 1994, 9, 333-337.	1.0	9
42	Low wavenumber Raman scattering in viscous liquids. Journal of Raman Spectroscopy, 1994, 25, 849-854.	1.2	8
43	Raman scattering in Ge-Ge1-xSix superlattice. Superlattices and Microstructures, 1993, 13, 109-114.	1.4	5
44	Dynamical properties of Ga1â^'x InxAs solid solutions: Influence of local distortion effects. Solid State Communications, 1993, 86, 351-355.	0.9	26
45	Raman study of longitudinal optical phononâ€plasmon coupling and disorder effects in heavily Beâ€doped GaAs. Journal of Applied Physics, 1991, 69, 4064-4070.	1.1	65
46	GaSb/GaAs heteroepitaxy characterized as a stress-free system. Applied Surface Science, 1991, 50, 434-439.	3.1	22
47	Raman study under resonant conditions of defects near the interface in a GaAs/Si heterostructure. Journal of Applied Physics, 1990, 68, 4777-4781.	1.1	23
48	Caractérisation Raman des contraintes et des défauts d'interface dans GaAs/Si. Revue De Physique Appliquée, 1990, 25, 951-956.	0.4	0
49	Photoluminescence and Raman studies of residual stresses in GaAs directly grown on InP. Applied Physics Letters, 1989, 55, 1558-1560.	1.5	16
50	Optical determination of strains in heterostructures: GaAs/Si as an example. Journal of Applied Physics, 1989, 66, 196-200.	1.1	71
51	Influence of MOVPE growth parameters on the structural and optical properties of GaAs on Si(100). Journal of Crystal Growth, 1988, 93, 487-493.	0.7	22
52	Raman determination of the composition in semiconductor ternary solid solutions. Journal of Applied Physics, 1987, 61, 1206-1208.	1.1	34
53	Raman scattering analysis of disorder in heterogeneous (GaAs)1â^'x(SiC2:H)x films grown by metal-organic chemical vapour deposition. Thin Solid Films, 1987, 155, 331-342.	0.8	9
54	Microstructure of boron-doped silicon layers prepared by low pressure chemical vapour deposition. Thin Solid Films, 1987, 150, 69-82.	0.8	8

#	Article	IF	CITATIONS
55	Characterization of implantation and annealing of Znâ€implanted InP by Raman spectrometry. Journal of Applied Physics, 1986, 60, 1980-1984.	1.1	47
56	Molecularâ€beam epitaxy and optical characterization of GaAs on CaF2substrates. Journal of Applied Physics, 1986, 60, 208-212.	1.1	14
57	Raman characterization of twinning in heteroepitaxial semiconductor layers: GaAs/(Ca,Sr)F2. Journal of Applied Physics, 1986, 60, 1025-1031.	1.1	31
58	Raman investigation of the InP lattice dynamics. Journal of Physics C: Solid State Physics, 1986, 19, 1471-1479.	1.5	55
59	Bond relaxation phenomenon and impurity modes frequencies in Ill–V compounds. Solid State Communications, 1985, 53, 179-182.	0.9	21
60	Comportement à deux modes de Ga(x)In(1 - x)P ? Diffusion Raman résonnante par les modes rendus actifs par le désordre. Revue De Physique Appliquée, 1984, 19, 17-20.	0.4	14
61	Lattice dynamics of the transition metal pentatellurides ZrTe5 and HfTe5. Solid State Communications, 1984, 50, 297-302.	0.9	14
62	Lacking Raman spectroscopic evidence for a structural phase transition in ZrTe5 at 141 K. Solid State Communications, 1984, 49, 1095-1098.	0.9	10
63	Phonons in the ternary phase ZrS3-xSex. Solid State Communications, 1983, 45, 889-893.	0.9	15
64	Raman scattering in the ternary phaseHfS3â^'xSex. Physical Review B, 1982, 26, 5694-5701.	1.1	20
65	Lattice modes in the linear chain compound ZrTe5. Solid State Communications, 1982, 44, 89-94.	0.9	15