Charlotte M Deane

List of Publications by Citations

Source: https://exaly.com/author-pdf/7845407/charlotte-m-deane-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

197 papers 6,142 citations

40 h-index

g-index

290 ext. papers

8,017 ext. citations

avg, IF

6.4 L-index

#	Paper	IF	Citations
197	Protein interactions: two methods for assessment of the reliability of high throughput observations. <i>Molecular and Cellular Proteomics</i> , 2002 , 1, 349-56	7.6	486
196	HOMSTRAD: a database of protein structure alignments for homologous families. <i>Protein Science</i> , 1998 , 7, 2469-71	6.3	421
195	Reduced amounts and abnormal forms of phospholipase C zeta (PLCzeta) in spermatozoa from infertile men. <i>Human Reproduction</i> , 2009 , 24, 2417-28	5.7	208
194	SAbDab: the structural antibody database. <i>Nucleic Acids Research</i> , 2014 , 42, D1140-6	20.1	193
193	CODA: a combined algorithm for predicting the structurally variable regions of protein models. <i>Protein Science</i> , 2001 , 10, 599-612	6.3	129
192	Freely available conformer generation methods: how good are they?. <i>Journal of Chemical Information and Modeling</i> , 2012 , 52, 1146-58	6.1	128
191	FREAD revisited: Accurate loop structure prediction using a database search algorithm. <i>Proteins:</i> Structure, Function and Bioinformatics, 2010 , 78, 1431-40	4.2	128
190	Synonymous codon usage influences the local protein structure observed. <i>Nucleic Acids Research</i> , 2010 , 38, 6719-28	20.1	116
189	A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density. <i>Nature Communications</i> , 2017 , 8, 15123	17.4	115
188	Five computational developability guidelines for therapeutic antibody profiling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 4025-4030	11.5	109
187	CoV-AbDab: the coronavirus antibody database. <i>Bioinformatics</i> , 2021 , 37, 734-735	7.2	108
186	ABodyBuilder: Automated antibody structure prediction with data-driven accuracy estimation. <i>MAbs</i> , 2016 , 8, 1259-1268	6.6	104
185	Revisiting date and party hubs: novel approaches to role assignment in protein interaction networks. <i>PLoS Computational Biology</i> , 2010 , 6, e1000817	5	100
184	ANARCI: antigen receptor numbering and receptor classification. <i>Bioinformatics</i> , 2016 , 32, 298-300	7.2	98
183	A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCI leads to male infertility. <i>Human Reproduction</i> , 2012 , 27, 222-31	5.7	96
182	Avoiding False Positive Conclusions in Molecular Simulation: The Importance of Replicas. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 6127-6138	6.4	94
181	MEDELLER: homology-based coordinate generation for membrane proteins. <i>Bioinformatics</i> , 2010 , 26, 2833-40	7.2	91

180	A microtubule interactome: complexes with roles in cell cycle and mitosis. <i>PLoS Biology</i> , 2008 , 6, e98	9.7	90
179	Improving B-cell epitope prediction and its application to global antibody-antigen docking. <i>Bioinformatics</i> , 2014 , 30, 2288-94	7.2	86
178	SAbPred: a structure-based antibody prediction server. <i>Nucleic Acids Research</i> , 2016 , 44, W474-8	20.1	79
177	Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid. <i>Protein Engineering, Design and Selection</i> , 1999 , 12, 1025-8	1.9	79
176	Progress and challenges in predicting protein interfaces. <i>Briefings in Bioinformatics</i> , 2016 , 17, 117-31	13.4	78
175	Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex. <i>Current Biology</i> , 2015 , 25, 2063	6.3	78
174	Rapid, Precise, and Reproducible Prediction of Peptide-MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 3346-56	6.4	78
173	Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA. <i>Journal of Biological Chemistry</i> , 2004 , 279, 53857-66	5.4	75
172	Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. <i>Nature Communications</i> , 2017 , 8, 14946	17.4	74
171	Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. <i>Journal of Immunology</i> , 2018 , 201, 2502-2509	5.3	73
170	The function of communities in protein interaction networks at multiple scales. <i>BMC Systems Biology</i> , 2010 , 4, 100	3.5	63
169	Protein Family-Specific Models Using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data. <i>Journal of Chemical Information and Modeling</i> , 2018 , 58, 2319-2330	6.1	63
168	Deciphering chemotaxis pathways using cross species comparisons. <i>BMC Systems Biology</i> , 2010 , 4, 3	3.5	57
167	Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. <i>Protein Engineering, Design and Selection</i> , 2013 , 26, 621-9	1.9	55
166	How old is your fold?. <i>Bioinformatics</i> , 2005 , 21 Suppl 1, i449-58	7.2	55
165	Type II Inhibitors Targeting CDK2. ACS Chemical Biology, 2015, 10, 2116-25	4.9	53
164	A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. <i>Proteins: Structure, Function and Bioinformatics</i> , 2000 , 40, 135-144	4.2	53
163	The H3 loop of antibodies shows unique structural characteristics. <i>Proteins: Structure, Function and Bioinformatics</i> , 2017 , 85, 1311-1318	4.2	52

162	Helix kinks are equally prevalent in soluble and membrane proteins. <i>Proteins: Structure, Function and Bioinformatics</i> , 2014 , 82, 1960-70	4.2	52
161	Deep Generative Models for 3D Linker Design. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 1983-1995	6.1	49
160	Protein protein interactions, evolutionary rate, abundance and age. <i>BMC Bioinformatics</i> , 2006 , 7, 128	3.6	49
159	Identifying and quantifying radiation damage at the atomic level. <i>Journal of Synchrotron Radiation</i> , 2015 , 22, 201-12	2.4	41
158	Prediction of VH-VL domain orientation for antibody variable domain modeling. <i>Proteins: Structure, Function and Bioinformatics</i> , 2015 , 83, 681-95	4.2	38
157	Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures. <i>Frontiers in Immunology</i> , 2020 , 11, 605170	8.4	38
156	Predicting antibody complementarity determining region structures without classification. <i>Molecular BioSystems</i> , 2011 , 7, 3327-34		35
155	Predicting protein-protein interactions in the context of protein evolution. <i>Molecular BioSystems</i> , 2010 , 6, 55-64		34
154	Thera-SAbDab: the Therapeutic Structural Antibody Database. <i>Nucleic Acids Research</i> , 2020 , 48, D383-D	328 .1	34
153	Alignment-free protein interaction network comparison. <i>Bioinformatics</i> , 2014 , 30, i430-7	7.2	32
152	Memoir: template-based structure prediction for membrane proteins. <i>Nucleic Acids Research</i> , 2013 , 41, W379-83	20.1	32
151	Proteomic analysis of microtubule-associated proteins during macrophage activation. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 2500-14	7.6	32
150	Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations. <i>Briefings in Bioinformatics</i> , 2015 , 16, 1035-44	13.4	31
149	Antibody H3 Structure Prediction. Computational and Structural Biotechnology Journal, 2017, 15, 222-23	1 6.8	30
148	STCRDab: the structural T-cell receptor database. <i>Nucleic Acids Research</i> , 2018 , 46, D406-D412	20.1	30
147	Length-independent structural similarities enrich the antibody CDR canonical class model. <i>MAbs</i> , 2016 , 8, 751-60	6.6	30
146	Improved protein loop prediction from sequence alone. <i>Protein Engineering, Design and Selection</i> , 2001 , 14, 473-8	1.9	30
145	The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. <i>ELife</i> , 2015 , 4, e07410	8.9	30

(2010-2017)

144	How B-Cell Receptor Repertoire Sequencing Can Be Enriched with Structural Antibody Data. <i>Frontiers in Immunology</i> , 2017 , 8, 1753	8.4	29
143	An iterative structure-assisted approach to sequence alignment and comparative modeling 1999 , 37, 55-60		29
142	MP-T: improving membrane protein alignment for structure prediction. <i>Bioinformatics</i> , 2013 , 29, 54-61	7.2	28
141	Large scale characterization of the LC13 TCR and HLA-B8 structural landscape in reaction to 172 altered peptide ligands: a molecular dynamics simulation study. <i>PLoS Computational Biology</i> , 2014 , 10, e1003748	5	28
140	iMembrane: homology-based membrane-insertion of proteins. <i>Bioinformatics</i> , 2009 , 25, 1086-8	7.2	28
139	The prospects of quantum computing in computational molecular biology. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1481	7.9	28
138	What evidence is there for the homology of protein-protein interactions?. <i>PLoS Computational Biology</i> , 2012 , 8, e1002645	5	27
137	Cotranslational protein foldingfact or fiction?. <i>Bioinformatics</i> , 2007 , 23, i142-8	7.2	27
136	Functionally guided alignment of protein interaction networks for module detection. <i>Bioinformatics</i> , 2009 , 25, 3166-73	7.2	26
135	Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction. <i>Bioinformatics</i> , 2017 , 33, 1346-1353	7.2	25
134	Structurally Mapping Antibody Repertoires. Frontiers in Immunology, 2018, 9, 1698	8.4	25
133	Learning from the ligand: using ligand-based features to improve binding affinity prediction. <i>Bioinformatics</i> , 2020 , 36, 758-764	7.2	25
132	Fold usage on genomes and protein fold evolution. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 60, 690-700	4.2	25
131	The role and predicted propensity of conserved proline residues in the 5-HT3 receptor. <i>Journal of Biological Chemistry</i> , 2001 , 276, 37962-6	5.4	25
130	Exploring fold space preferences of new-born and ancient protein superfamilies. <i>PLoS Computational Biology</i> , 2013 , 9, e1003325	5	24
129	i-Patch: interprotein contact prediction using local network information. <i>Proteins: Structure, Function and Bioinformatics</i> , 2010 , 78, 2781-97	4.2	24
128	Modelling sequential protein folding under kinetic control. <i>Bioinformatics</i> , 2006 , 22, e203-10	7.2	23
127	How threshold behaviour affects the use of subgraphs for network comparison. <i>Bioinformatics</i> , 2010 , 26, i611-7	7.2	21

126	Predicting and validating protein interactions using network structure. <i>PLoS Computational Biology</i> , 2008 , 4, e1000118	5	21
125	Examining variable domain orientations in antigen receptors gives insight into TCR-like antibody design. <i>PLoS Computational Biology</i> , 2014 , 10, e1003852	5	20
124	How repertoire data are changing antibody science. <i>Journal of Biological Chemistry</i> , 2020 , 295, 9823-983	3 ₹.4	19
123	Environment specific substitution tables improve membrane protein alignment. <i>Bioinformatics</i> , 2011 , 27, i15-23	7.2	19
122	A structural model of the human thrombopoietin receptor complex. <i>Journal of Molecular Graphics and Modelling</i> , 1997 , 15, 170-8, 185-8	2.8	18
121	An assessment of the uses of homologous interactions. <i>Bioinformatics</i> , 2008 , 24, 689-95	7.2	18
120	Examining the Conservation of Kinks in Alpha Helices. <i>PLoS ONE</i> , 2016 , 11, e0157553	3.7	17
119	SCALOP: sequence-based antibody canonical loop structure annotation. <i>Bioinformatics</i> , 2019 , 35, 1774-	1 <i>7.</i> ፮6	17
118	Antibody Intigen complex modelling in the era of immunoglobulin repertoire sequencing. <i>Molecular Systems Design and Engineering</i> , 2019 , 4, 679-688	4.6	16
117	Exploring peptide/MHC detachment processes using hierarchical natural move Monte Carlo. <i>Bioinformatics</i> , 2016 , 32, 181-6	7.2	16
116	T-Cell Receptor Binding Affects the Dynamics of the Peptide/MHC-I Complex. <i>Journal of Chemical Information and Modeling</i> , 2016 , 56, 46-53	6.1	16
115	Partial-occupancy binders identified by the Pan-Dataset Density Analysis method offer new chemical opportunities and reveal cryptic binding sites. <i>Structural Dynamics</i> , 2017 , 4, 032104	3.2	16
114	Building a better fragment library for de novo protein structure prediction. <i>PLoS ONE</i> , 2015 , 10, e01239	1387	16
113	The imprint of codons on protein structure. <i>Biotechnology Journal</i> , 2011 , 6, 641-9	5.6	16
112	Looking for therapeutic antibodies in next-generation sequencing repositories. <i>MAbs</i> , 2019 , 11, 1197-12	2 6 5	15
111	Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice. <i>PLoS Computational Biology</i> , 2020 , 16, e1007636	5	15
110	Predicting loop conformational ensembles. <i>Bioinformatics</i> , 2018 , 34, 949-956	7.2	15
109	Gro2mat: a package to efficiently read gromacs output in MATLAB. <i>Journal of Computational Chemistry</i> , 2014 , 35, 1528-31	3.5	15

(2022-2017)

108	Co-evolution techniques are reshaping the way we do structural bioinformatics. <i>F1000Research</i> , 2017 , 6, 1224	3.6	15	
107	Producing high-accuracy lattice models from protein atomic coordinates including side chains. <i>Advances in Bioinformatics</i> , 2012 , 2012, 148045	5.5	15	
106	Directionality in protein fold prediction. <i>BMC Bioinformatics</i> , 2010 , 11, 172	3.6	15	
105	Data Set Augmentation Allows Deep Learning-Based Virtual Screening to Better Generalize to Unseen Target Classes and Highlight Important Binding Interactions. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 3722-3730	6.1	15	
104	Computational Tools for Aiding Rational Antibody Design. <i>Methods in Molecular Biology</i> , 2017 , 1529, 399-416	1.4	14	•
103	Measuring rank robustness in scored protein interaction networks. <i>BMC Bioinformatics</i> , 2019 , 20, 446	3.6	14	
102	The contribution of major histocompatibility complex contacts to the affinity and kinetics of T cell receptor binding. <i>Scientific Reports</i> , 2016 , 6, 35326	4.9	14	•
101	Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex [corrected]. <i>Current Biology</i> , 2015 , 25, 1777-83	6.3	14	
100	Protein structure prediction begins well but ends badly. <i>Proteins: Structure, Function and Bioinformatics</i> , 2010 , 78, 1282-90	4.2	14	
99	Maturation of the Human Immunoglobulin Heavy Chain Repertoire With Age. <i>Frontiers in Immunology</i> , 2020 , 11, 1734	8.4	14	
98	Comparing co-evolution methods and their application to template-free protein structure prediction. <i>Bioinformatics</i> , 2017 , 33, 373-381	7.2	14	
97	Comparative Analysis of the CDR Loops of Antigen Receptors. Frontiers in Immunology, 2019 , 10, 2454	8.4	13	
96	Cross-linking mass spectrometry identifies new interfaces of Augmin required to localise the Eubulin ring complex to the mitotic spindle. <i>Biology Open</i> , 2017 , 6, 654-663	2.2	13	
95	Humanization of antibodies using a machine learning approach on large-scale repertoire data. <i>Bioinformatics</i> , 2021 ,	7.2	13	
94	Variable Regions of Antibodies and T-Cell Receptors May Not Be Sufficient in Molecular Simulations Investigating Binding. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 3097-3105	6.4	12	
93	Identifying networks with common organizational principles. Journal of Complex Networks, 2018, 6, 887	7- <u>9.†</u> 3	12	
92	Antibody side chain conformations are position-dependent. <i>Proteins: Structure, Function and Bioinformatics</i> , 2018 , 86, 383-392	4.2	12	
91	ABlooper: Fast accurate antibody CDR loop structure prediction with accuracy estimation <i>Bioinformatics</i> , 2022 ,	7.2	12	

90	Structural Bridges through Fold Space. <i>PLoS Computational Biology</i> , 2015 , 11, e1004466	5	11
89	The importance of age and high degree, in protein-protein interaction networks. <i>Journal of Computational Biology</i> , 2012 , 19, 785-95	1.7	11
88	Signatures of co-translational folding. <i>Biotechnology Journal</i> , 2011 , 6, 742-51	5.6	11
87	Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures		11
86	A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies. <i>MAbs</i> , 2021 , 13, 1869406	6.6	11
85	Exploring the potential of template-based modelling. <i>Bioinformatics</i> , 2010 , 26, 1849-56	7.2	10
84	CoV-AbDab: the Coronavirus Antibody Database		10
83	OOMMPPAA: a tool to aid directed synthesis by the combined analysis of activity and structural data. <i>Journal of Chemical Information and Modeling</i> , 2014 , 54, 2636-46	6.1	9
82	Evolutionary analysis reveals low coverage as the major challenge for protein interaction network alignment. <i>Molecular BioSystems</i> , 2010 , 6, 2296-304		9
81	Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope. <i>MAbs</i> , 2021 , 13, 18	7364678	9
80	Filtering Next-Generation Sequencing of the Ig Gene Repertoire Data Using Antibody Structural Information. <i>Journal of Immunology</i> , 2018 , 201, 3694-3704	5.3	9
79	Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 2600-2616	6.1	8
78	How long is a piece of loop?. <i>PeerJ</i> , 2013 , 1, e1	3.1	8
77	Public Baseline and shared response structures support the theory of antibody repertoire functional commonality. <i>PLoS Computational Biology</i> , 2021 , 17, e1008781	5	8
76	MHC binding affects the dynamics of different T-cell receptors in different ways. <i>PLoS Computational Biology</i> , 2019 , 15, e1007338	5	8
75	Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction. <i>Bioinformatics</i> , 2018 , 34, 1132-1140	7.2	8
74	DLAB-Deep learning methods for structure-based virtual screening of antibodies. <i>Bioinformatics</i> , 2021 ,	7.2	8
73	Functional module detection through integration of single-cell RNA sequencing data with protein-protein interaction networks. <i>BMC Genomics</i> , 2020 , 21, 756	4.5	7

(2021-2016)

72	Comparison of large networks with sub-sampling strategies. Scientific Reports, 2016, 6, 28955	4.9	7
71	Fragment-based modeling of membrane protein loops: successes, failures, and prospects for the future. <i>Proteins: Structure, Function and Bioinformatics</i> , 2014 , 82, 175-86	4.2	7
70	Observed Antibody Space: A diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. <i>Protein Science</i> , 2021 ,	6.3	7
69	Modeling conformational flexibility of kinases in inactive states. <i>Proteins: Structure, Function and Bioinformatics</i> , 2019 , 87, 943-951	4.2	6
68	Combining co-evolution and secondary structure prediction to improve fragment library generation. <i>Bioinformatics</i> , 2018 , 34, 2219-2227	7.2	6
67	Crowdsourcing yields a new standard for kinks in protein helices. <i>Journal of Chemical Information and Modeling</i> , 2014 , 54, 2585-93	6.1	6
66	Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics <i>MAbs</i> , 2022 , 14, 2020082	6.6	6
65	Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies <i>PLoS Computational Biology</i> , 2021 , 17, e1009675	5	6
64	Deep generative design with 3D pharmacophoric constraints. <i>Chemical Science</i> , 2021 , 12, 14577-14589	9.4	6
63	Modeling Functional Motions of Biological Systems by Customized Natural Moves. <i>Biophysical Journal</i> , 2016 , 111, 710-721	2.9	6
62	Local network patterns in protein-protein interfaces. <i>PLoS ONE</i> , 2013 , 8, e57031	3.7	5
61	Protein three-dimensional structural databases: domains, structurally aligned homologues and superfamilies. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 1998 , 54, 1168-77		5
60	A statistical approach using network structure in the prediction of protein characteristics. <i>Bioinformatics</i> , 2007 , 23, 2314-21	7.2	5
59	A Multi-Crystal Method for Extracting Obscured Signal from Crystallographic Electron Density		5
58	Epitope profiling of coronavirus-binding antibodies using computational structural modelling		5
57	Hypergraphs for predicting essential genes using multiprotein complex data. <i>Journal of Complex Networks</i> , 2021 , 9,	1.7	5
56	Tertiary Element Interaction in HIV-1 TAR. Journal of Chemical Information and Modeling, 2016, 56, 1746	5-6.4	5
55	The allosteric modulation of complement C5 by knob domain peptides. <i>ELife</i> , 2021 , 10,	8.9	5

54	TCRBuilder: multi-state T-cell receptor structure prediction. <i>Bioinformatics</i> , 2020 , 36, 3580-3581	7.2	4
53	pyHVis3D: visualising molecular simulation deduced H-bond networks in 3D: application to T-cell receptor interactions. <i>Bioinformatics</i> , 2018 , 34, 1941-1943	7.2	4
52	The functional domain grouping of microtubule associated proteins. <i>Communicative and Integrative Biology</i> , 2008 , 1, 47-50	1.7	4
51	Using phylogeny to improve genome-wide distant homology recognition. <i>PLoS Computational Biology</i> , 2007 , 3, e3	5	4
50	Evidence of Antibody Repertoire Functional Convergence through Public Baseline and Shared Response Structures		4
49	SAbDab in the age of biotherapeutics: updates including SAbDab-nano, the nanobody structure tracker <i>Nucleic Acids Research</i> , 2022 , 50, D1368-D1372	20.1	4
48	Different B cell subpopulations show distinct patterns in their IgH repertoire metrics. <i>ELife</i> , 2021 , 10,	8.9	4
47	Maturation of the human B-cell receptor repertoire with age		4
46	Comparative analysis of the CDR loops of antigen receptors		4
45	Structural Diversity of B-Cell Receptor Repertoires along the B-cell Differentiation Axis in Humans and Mice		4
44	Robust gene coexpression networks using signed distance correlation. <i>Bioinformatics</i> , 2021 ,	7.2	4
43	Co-evolutionary Distance Predictions Contain Flexibility Information. <i>Bioinformatics</i> , 2021 ,	7.2	4
42	In silico structural modeling of multiple epigenetic marks on DNA. <i>Bioinformatics</i> , 2018 , 34, 41-48	7.2	3
41	RFQAmodel: Random Forest Quality Assessment to identify a predicted protein structure in the correct fold. <i>PLoS ONE</i> , 2019 , 14, e0218149	3.7	3
40	Mutual information and variants for protein domain-domain contact prediction. <i>BMC Research Notes</i> , 2012 , 5, 472	2.3	3
39	Protein Interaction Networks and Their Statistical Analysis 2011 , 200-234		3
38	Current structure predictors are not learning the physics of protein folding Bioinformatics, 2022,	7.2	3
37	WONKA and OOMMPPAA: analysis of protein-ligand interaction data to direct structure-based drug design. <i>Acta Crystallographica Section D: Structural Biology</i> , 2017 , 73, 279-285	5.5	3

36	Ab-Ligity: Identifying sequence-dissimilar antibodies that bind to the same epitope		3
35	Increasing the accuracy of protein loop structure prediction with evolutionary constraints. <i>Bioinformatics</i> , 2019 , 35, 2585-2592	7.2	3
34	Generating Property-Matched Decoy Molecules Using Deep Learning. Bioinformatics, 2021,	7.2	3
33	DLAB - Deep learning methods for structure-based virtual screening of antibodies		3
32	A statistical model for helices with applications. <i>Biometrics</i> , 2018 , 74, 845-854	1.8	2
31	The evolution of contact prediction: evidence that contact selection in statistical contact prediction is changing. <i>Bioinformatics</i> , 2020 , 36, 1750-1756	7.2	2
30	Predicting inter-species cross-talk in two-component signalling systems. PLoS ONE, 2012, 7, e37737	3.7	2
29	Current strategies for detecting functional convergence across B-cell receptor repertoires. <i>MAbs</i> , 2021 , 13, 1996732	6.6	2
28	Functional module detection through integration of single-cell RNA sequencing data with protein protein interaction networks		2
27	COGENT: evaluating the consistency of gene co-expression networks. <i>Bioinformatics</i> , 2021 , 37, 1928-1	9 2 9.2	2
26	Ribosome occupancy profiles are conserved between structurally and evolutionarily related yeast domains. <i>Bioinformatics</i> , 2021 ,	7.2	2
25	Investigating the potential for a limited quantum speedup on protein lattice problems. <i>New Journal of Physics</i> ,	2.9	2
24	Current protein structure predictors do not produce meaningful folding pathways		2
23	Humanization of antibodies using a machine learning approach on large-scale repertoire data		2
22	HLA-DM Stabilizes the Empty MHCII Binding Groove: A Model Using Customized Natural Move Monte Carlo. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 2894-2899	6.1	1
21	Protein Modeling and Structural Prediction 2014 , 171-182		1
20	Incorporating Target-Specific Pharmacophoric Information Into Deep Generative Models For Fragment Elaboration		1
19	Measuring rank robustness in scored protein interaction networks		1

18	A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-Pertussis toxoid antibodies		1
17	PROTEIN COMPARATIVE MODELLING AND DRUG DISCOVERY 2003 , 445-458		1
16	Novel VI pecific germline contacts shape an elite controller T cell response		1
15	Co-evolutionary Distance Prediction for Flexibility Prediction		1
14	Looking for Therapeutic Antibodies in Next Generation Sequencing Repositories		1
13	Deep Generative Design with 3D Pharmacophoric Constraints		1
12	High-Throughput Antibody Structure Modeling and Design Using ABodyBuilder. <i>Methods in Molecular Biology</i> , 2019 , 1851, 367-380	1.4	1
11	ABlooper: Fast accurate antibody CDR loop structure prediction with accuracy estimation		1
10	Assessment of model fit via network comparison methods based on subgraph counts. <i>Journal of Complex Networks</i> , 2019 , 7, 226-253	1.7	O
9	Al in 3D compound design Current Opinion in Structural Biology, 2022 , 73, 102326	8.1	O
8	The Therapeutic Antibody Profiler for Computational Developability Assessment. <i>Methods in Molecular Biology</i> , 2022 , 2313, 115-125	1.4	O
7	Membranome 3.0: Database of single-pass membrane proteins with AlphaFold models <i>Protein Science</i> , 2022 , 31, e4318	6.3	O
6	Advances in computational structure-based antibody design <i>Current Opinion in Structural Biology</i> , 2022 , 74, 102379	8.1	O
5	Ranking of communities in multiplex spatiotemporal models of brain dynamics <i>Applied Network Science</i> , 2022 , 7, 15	2.9	
4	Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice 2020 , 16, e1007636		
3	Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice 2020 , 16, e1007636		
2	Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice 2020 , 16, e1007636		
1	Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice 2020 , 16, e1007636		