Edward B Thorp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7845153/publications.pdf

Version: 2024-02-01

98 papers 5,520 citations

94269 37 h-index 70 g-index

99 all docs 99 docs citations 99 times ranked 7761 citing authors

#	Article	IF	CITATIONS
1	Resolving inflammatory links between myocardial infarction and vascular dementia. Seminars in Immunology, 2022, 59, 101600.	2.7	6
2	Cardio-omentopexy requires a cardioprotective innate immune response to promote myocardial angiogenesis in mice. JTCVS Open, 2022, , .	0.2	0
3	Immunometabolic mechanisms of heart failure with preserved ejection fraction., 2022, 1, 211-222.		27
4	Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. Journal of Clinical Investigation, 2022, 132, .	3.9	51
5	Functional implications of neutrophil metabolism during ischemic tissue repair. Current Opinion in Pharmacology, 2022, 63, 102191.	1.7	7
6	Acute murine cytomegalovirus disrupts established transplantation tolerance and causes recipient allo-sensitization. American Journal of Transplantation, 2021, 21, 515-524.	2.6	4
7	Identification and analysis of circulating long non-coding RNAs with high significance in diabetic cardiomyopathy. Scientific Reports, 2021, 11, 2571.	1.6	10
8	Macrophage Metabolic Signaling during Ischemic Injury and Cardiac Repair. Immunometabolism, 2021, 3,	0.7	9
9	Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Science Advances, 2021, 7, .	4.7	45
10	Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction. Journal of Clinical Investigation, 2021, 131, .	3.9	42
11	Cardiopulmonary Bypass–Induced Inflammation and Myocardial Ischemia and Reperfusion Injury Stimulates Accumulation of Soluble MER*. Pediatric Critical Care Medicine, 2021, 22, 822-831.	0.2	6
12	Bone marrow-derived AXL tyrosine kinase promotes mitogenic crosstalk and cardiac allograft vasculopathy. Journal of Heart and Lung Transplantation, 2021, 40, 435-446.	0.3	4
13	Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. Journal of Experimental Medicine, 2021, 218, .	4.2	27
14	<i>ADAMTS7</i> Knockdown in Context: Emerging Therapeutic Targets in Atherothrombosis. Circulation Research, 2021, 129, 471-473.	2.0	1
15	Long-Term Trajectories of Left Ventricular Ejection Fraction in Patients With Chronic Inflammatory Diseases and Heart Failure: An Analysis of Electronic Health Records. Circulation: Heart Failure, 2021, 14, e008478.	1.6	6
16	Can polarization of macrophage metabolism enhance cardiac regeneration?. Journal of Molecular and Cellular Cardiology, 2021, 160, 87-96.	0.9	7
17	Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nature Metabolism, 2021, 3, 1313-1326.	5.1	31
18	Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1056-H1073.	1.5	53

#	Article	IF	CITATIONS
19	Comparative Risk of Incident Coronary Heart Disease Across Chronic Inflammatory Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 757738.	1.1	3
20	Monocytes prime autoreactive T cells after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H116-H123.	1.5	15
21	Kidney-intrinsic factors determine the severity of ischemia/reperfusion injury in a mouse model of delayed graft function. Kidney International, 2020, 98, 1489-1501.	2.6	13
22	Doxorubicin-Induced Ascension of Resident Cardiac Macrophages. Circulation Research, 2020, 127, 628-630.	2.0	1
23	MCMV Dissemination from Latently-Infected Allografts Following Transplantation into Pre-Tolerized Recipients. Pathogens, 2020, 9, 607.	1.2	4
24	Single-cell RNA sequencing uncovers heterogenous transcriptional signatures in macrophages during efferocytosis. Scientific Reports, 2020, 10, 14333.	1.6	48
25	Lymphoangiocrine signals promote cardiac growth and repair. Nature, 2020, 588, 705-711.	13.7	103
26	New Insights Into the Molecular Mechanisms and Immune Control of Cytomegalovirus Reactivation. Transplantation, 2020, 104, e118-e124.	0.5	12
27	Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Frontiers in Immunology, 2020, 11, 869.	2.2	6
28	Nanoparticle Platforms for Antigen-Specific Immune Tolerance. Frontiers in Immunology, 2020, 11, 945.	2.2	28
29	Intercellular Adhesion Molecule 1 Functions as an Efferocytosis Receptor in Inflammatory Macrophages. American Journal of Pathology, 2020, 190, 874-885.	1.9	45
30	Murine cytomegalovirus dissemination but not reactivation in donor-positive/recipient-negative allogeneic kidney transplantation can be effectively prevented by transplant immune tolerance. Kidney International, 2020, 98, 147-158.	2.6	8
31	Cytomegalovirus Latency and Reactivation: An Intricate Interplay With the Host Immune Response. Frontiers in Cellular and Infection Microbiology, 2020, 10, 130.	1.8	121
32	Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight, 2020, 5, .	2.3	30
33	Select Macrophage Noncoding RNAs of Interest in Cardiovascular Disease. Journal of Lipid and Atherosclerosis, 2020, 9, 153.	1.1	1
34	Receptor tyrosine kinase MerTK suppresses an allogenic type I IFN response to promote transplant tolerance. American Journal of Transplantation, 2019, 19, 674-685.	2.6	24
35	Surface Engineered Polymersomes for Enhanced Modulation of Dendritic Cells During Cardiovascular Immunotherapy. Advanced Functional Materials, 2019, 29, 1904399.	7.8	47
36	Mechanism of Enhanced MerTK-Dependent Macrophage Efferocytosis by Extracellular Vesicles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2082-2096.	1.1	49

#	Article	IF	CITATIONS
37	Dietary Saturated Fat Promotes Arrhythmia by Activating NOX2 (NADPH Oxidase 2). Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007573.	2.1	21
38	Genome-wide differential expression profiling of lncRNAs and mRNAs associated with early diabetic cardiomyopathy. Scientific Reports, 2019, 9, 15345.	1.6	29
39	Macrophages in Heart Failure with Reduced versus Preserved Ejection Fraction. Trends in Molecular Medicine, 2019, 25, 328-340.	3.5	51
40	Immunometabolism of Phagocytes and Relationships to Cardiac Repair. Frontiers in Cardiovascular Medicine, 2019, 6, 42.	1.1	30
41	Cardio-omentopexy Reduces Cardiac Fibrosis and Heart Failure After Experimental Pressure Overload. Annals of Thoracic Surgery, 2019, 107, 1448-1455.	0.7	2
42	A clinically relevant murine model unmasks a "two-hit―mechanism for reactivation and dissemination of cytomegalovirus after kidney transplant. American Journal of Transplantation, 2019, 19, 2421-2433.	2.6	28
43	Mitochondrial Indigestion After Lipid Scavenging. Circulation Research, 2019, 125, 1103-1105.	2.0	4
44	Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism, 2019, 29, 443-456.e5.	7.2	233
45	Lysosomal Cholesterol Hydrolysis Couples Efferocytosis to Anti-Inflammatory Oxysterol Production. Circulation Research, 2018, 122, 1369-1384.	2.0	88
46	Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1â€dependent mechanisms of cardiac repair. FASEB Journal, 2018, 32, 254-264.	0.2	45
47	PIMT/NCOA6IP Deletion in the Mouse Heart Causes Delayed Cardiomyopathy Attributable to Perturbation in Energy Metabolism. International Journal of Molecular Sciences, 2018, 19, 1485.	1.8	8
48	Acute and chronic phagocyte determinants of cardiac allograft vasculopathy. Seminars in Immunopathology, 2018, 40, 593-603.	2.8	2
49	The endoplasmic reticulum–resident E3 ubiquitin ligase Hrd1 controls a critical checkpoint in B cell development in mice. Journal of Biological Chemistry, 2018, 293, 12934-12944.	1.6	25
50	Differential Role of B Cells and IL-17 Versus IFN- \hat{l}^3 During Early and Late Rejection of Pig Islet Xenografts in Mice. Transplantation, 2017, 101, 1801-1810.	0.5	17
51	Allograft Inflammatory Factor-1 Links T-Cell Activation, Interferon Response, and Macrophage Activation in Chronic Kawasaki Disease Arteritis. Journal of the Pediatric Infectious Diseases Society, 2017, 6, e94-e102.	0.6	16
52	MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury. Circulation Research, 2017, 121, 930-940.	2.0	144
53	Acute CD47 Blockade During Ischemic Myocardial Reperfusion Enhances Phagocytosis-Associated Cardiac Repair. JACC Basic To Translational Science, 2017, 2, 386-397.	1.9	40
54	Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Frontiers in Immunology, 2017, 8, 1428.	2.2	25

#	Article	IF	Citations
55	MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. Journal of Clinical Investigation, 2017, 127, 564-568.	3.9	158
56	Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice. PLoS ONE, 2016, 11, e0160755.	1.1	31
57	Proresolving Lipid Mediators Restore Balance to the Vulnerable Plaque. Circulation Research, 2016, 119, 972-974.	2.0	5
58	MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6526-6531.	3.3	167
59	Disruption of Glut1 in Hematopoietic Stem Cells Prevents Myelopoiesis and Enhanced Glucose Flux in Atheromatous Plaques of <i>ApoE</i> ^{â°'/â°'} Mice. Circulation Research, 2016, 118, 1062-1077.	2.0	93
60	Deposition of microparticles by neutrophils onto inflamed epithelium: a new mechanism to disrupt epithelial intercellular adhesions and promote transepithelial migration. FASEB Journal, 2016, 30, 4007-4020.	0.2	50
61	HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis. Journal of Immunology, 2016, 197, 3639-3649.	0.4	21
62	Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10394-10399.	3.3	38
63	Constitutive Expression of a Dominant-Negative TGF- \hat{l}^2 Type II Receptor in the Posterior Left Atrium Leads to Beneficial Remodeling of Atrial Fibrillation Substrate. Circulation Research, 2016, 119, 69-82.	2.0	44
64	Depletion of regulatory T cells decreases cardiac parasitosis and inflammation in experimental Chagas disease. Parasitology Research, 2015, 114, 1167-1178.	0.6	22
65	T-cell exhaustion in allograft rejection and tolerance. Current Opinion in Organ Transplantation, 2015, 20, 37-42.	0.8	34
66	Shedding of TNF receptor 2 by effector CD8+ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. Journal of Leukocyte Biology, 2015, 98, 423-434.	1.5	22
67	Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. Journal of Molecular and Cellular Cardiology, 2015, 87, 171-179.	0.9	27
68	Identification of a Non-Growth Factor Role for GM-CSF in Advanced Atherosclerosis. Circulation Research, 2015, 116, e13-24.	2.0	73
69	Therapeutic Inflammatory Monocyte Modulation Using Immune-Modifying Microparticles. Science Translational Medicine, 2014, 6, 219ra7.	5.8	284
70	Extracellular signal-regulated kinase activation during cardiac hypertrophy reduces sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) transcription. Journal of Molecular and Cellular Cardiology, 2014, 75, 58-63.	0.9	25
71	Phagocyte–myocyte interactions and consequences during hypoxic wound healing. Cellular Immunology, 2014, 291, 65-73.	1.4	14
72	An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. Journal of Clinical Investigation, 2014, 124, 1296-1308.	3.9	91

#	Article	IF	Citations
73	Toll-like receptor-mediated IRE1 \hat{I} ± activation as a therapeutic target for inflammatory arthritis. EMBO Journal, 2013, 32, 2477-2490.	3.5	175
74	Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. Journal of Clinical Investigation, 2013, 123, 179-188.	3.9	134
75	Quantitation of Acute Necrosis After Experimental Myocardial Infarction. Methods in Molecular Biology, 2013, 1004, 115-133.	0.4	17
76	ACAT Inhibition Reduces the Progression of Preexisting, Advanced Atherosclerotic Mouse Lesions Without Plaque or Systemic Toxicity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 4-12.	1.1	34
77	Enhanced Efferocytosis of Apoptotic Cardiomyocytes Through Myeloid-Epithelial-Reproductive Tyrosine Kinase Links Acute Inflammation Resolution to Cardiac Repair After Infarction. Circulation Research, 2013, 113, 1004-1012.	2.0	268
78	Shedding Light on Impaired Efferocytosis and Nonresolving Inflammation. Circulation Research, 2013, 113, 9-12.	2.0	16
79	Contrasting Inflammation Resolution during Atherosclerosis and Post Myocardial Infarction at the Level of Monocyte/Macrophage Phagocytic Clearance. Frontiers in Immunology, 2012, 3, 39.	2.2	26
80	The Myocardial Unfolded Protein Response during Ischemic Cardiovascular Disease. Biochemistry Research International, 2012, 2012, 1-7.	1.5	15
81	The role of macrophages and dendritic cells in the clearance of apoptotic cells in advanced atherosclerosis. European Journal of Immunology, 2011, 41, 2515-2518.	1.6	86
82	Methods and Models for Monitoring UPR-Associated Macrophage Death During Advanced Atherosclerosis. Methods in Enzymology, 2011, 489, 277-296.	0.4	4
83	Shedding of the Mer Tyrosine Kinase Receptor Is Mediated by ADAM17 Protein through a Pathway Involving Reactive Oxygen Species, Protein Kinase Cl´, and p38 Mitogen-activated Protein Kinase (MAPK). Journal of Biological Chemistry, 2011, 286, 33335-33344.	1.6	228
84	A reporter for tracking the UPR in vivo reveals patterns of temporal and cellular stress during atherosclerotic progression. Journal of Lipid Research, 2011, 52, 1033-1038.	2.0	24
85	Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1124-1136.	2.2	63
86	ABCA1 and ABCG1 Protect Against Oxidative Stress–Induced Macrophage Apoptosis During Efferocytosis. Circulation Research, 2010, 106, 1861-1869.	2.0	160
87	Defective Phagocytosis of Apoptotic Cells by Macrophages in Atherosclerotic Lesions of ob/ob Mice and Reversal by a Fish Oil Diet. Circulation Research, 2009, 105, 1072-1082.	2.0	128
88	Brief Report: Increased Apoptosis in Advanced Atherosclerotic Lesions of <i>Apoe</i> ^{â^'/â^'} Mice Lacking Macrophage Bcl-2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 169-172.	1.1	86
89	Mechanisms and consequences of efferocytosis in advanced atherosclerosis. Journal of Leukocyte Biology, 2009, 86, 1089-1095.	1.5	177
90	Reduced Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Apoeâ^'/â^' and Ldlrâ^'/â^' Mice Lacking CHOP. Cell Metabolism, 2009, 9, 474-481.	7.2	303

#	Article	IF	CITATIONS
91	Differential Effects of Pioglitazone on Advanced Atherosclerotic Lesions. American Journal of Pathology, 2009, 175, 1348.	1.9	2
92	Mertk Receptor Mutation Reduces Efferocytosis Efficiency and Promotes Apoptotic Cell Accumulation and Plaque Necrosis in Atherosclerotic Lesions of <i>Apoe </i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1421-1428.	1.1	300
93	Pivotal Advance: Macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. Journal of Leukocyte Biology, 2007, 82, 1040-1050.	1.5	63
94	Pioglitazone Increases Macrophage Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Nondiabetic Low-Density Lipoprotein Receptor–Null Mice. Circulation, 2007, 116, 2182-2190.	1.6	50
95	Palmitoylations on Murine Coronavirus Spike Proteins Are Essential for Virion Assembly and Infectivity. Journal of Virology, 2006, 80, 1280-1289.	1.5	82
96	Cholesterol-induced Apoptotic Macrophages Elicit an Inflammatory Response in Phagocytes, Which Is Partially Attenuated by the Mer Receptor. Journal of Biological Chemistry, 2006, 281, 6707-6717.	1.6	79
97	Diversity of Coronavirus Spikes: Relationship to Pathogen Entry and Dissemination., 2005,, 49-63.		O
98	Requirements for CEACAMs and Cholesterol during Murine Coronavirus Cell Entry. Journal of Virology, 2004, 78, 2682-2692.	1.5	99