Yuanhui Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7845083/yuanhui-zhang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 3,728 36 90 h-index g-index citations papers 4,481 8.7 92 5.74 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
90	Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. <i>Chemical Engineering Journal</i> , 2022 , 435, 135078	14.7	3
89	Enhancing energy recovery via two stage co-fermentation of hydrothermal liquefaction aqueous phase and crude glycerol. <i>Energy Conversion and Management</i> , 2021 , 231, 113855	10.6	2
88	Testing the plastic-wrapped composting system to dispose of swine mortalities during an animal disease outbreak. <i>Journal of Environmental Quality</i> , 2021 , 50, 899-910	3.4	О
87	Experimental and Numerical Model Investigations of Oxygen-Enriched Characteristics in Air-Conditioned Rooms. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 4733	2.6	2
86	Development of a mobile, pilot scale hydrothermal liquefaction reactor: Food waste conversion product analysis and techno-economic assessment. <i>Energy Conversion and Management: X</i> , 2021 , 10, 100076	2.5	5
85	A GPU-accelerated particle-detection algorithm for real-time volumetric particle-tracking velocimetry under non-uniform illumination. <i>Measurement Science and Technology</i> , 2021 , 32, 105304	2	1
84	Spray and combustion characteristics of pure hydrothermal liquefaction biofuel and mixture blends with diesel. <i>Fuel</i> , 2021 , 294, 120498	7.1	2
83	The application of an absorbent-amended microalgal-bacterial system for enhancing hydrothermal liquefaction wastewater treatment and resource recovery. <i>Journal of Applied Phycology</i> , 2021 , 33, 79-90) ^{3.2}	2
82	In Situ hydrochar regulates Cu fate and speciation: Insights into transformation mechanism. <i>Journal of Hazardous Materials</i> , 2021 , 410, 124616	12.8	1
81	Biocrude Oil from Algal Bloom Microalgae: A Novel Integration of Biological and Thermochemical Techniques. <i>Environmental Science & Environmental Scie</i>	10.3	8
80	Hydrothermal liquefaction accelerates the toxicity and solubility of arsenic in biowaste. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126341	12.8	6
79	Towards transportation fuel production from food waste: Potential of biocrude oil distillates for gasoline, diesel, and jet fuel. <i>Fuel</i> , 2021 , 301, 121028	7.1	4
78	Effect of biomass origins and composition on stability of hydrothermal biocrude oil. <i>Fuel</i> , 2021 , 302, 12	1 †3 8	5
77	3D real-time volumetric particle tracking velocimetry (A promising tool for studies of airflow around high-rise buildings. <i>Building and Environment</i> , 2020 , 178, 106930	6.5	4
76	Investigation of combustion and spray of biowaste based fuel and diesel blends. Fuel, 2020, 268, 11738	2 7.1	7
75	Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. <i>Bioresource Technology</i> , 2020 , 312, 123552	11	6
74	Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production: A critical review. <i>Bioresource Technology</i> , 2020 , 298, 122421	11	39

73	Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. <i>Progress in Energy and Combustion Science</i> , 2020 , 77, 100819	33.6	98
7 2	Continuous treatment of hydrothermal liquefaction wastewater in an anaerobic biofilm reactor: Potential role of granular activated carbon. <i>Journal of Cleaner Production</i> , 2020 , 276, 122836	10.3	14
71	Characterization and bioremediation potential of byproducts from hydrothermal liquefaction of food wastes. <i>Bioresource Technology Reports</i> , 2020 , 12, 100555	4.1	3
70	Renewable diesel blendstocks and bioprivileged chemicals distilled from algal biocrude oil converted via hydrothermal liquefaction. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5165-5178	5.8	4
69	Establishment and performance of a plug-flow continuous hydrothermal reactor for biocrude oil production. <i>Fuel</i> , 2020 , 280, 118605	7.1	12
68	An innovative multistage anaerobic hythane reactor (MAHR): Metabolic flux, thermodynamics and microbial functions. <i>Water Research</i> , 2020 , 169, 115216	12.5	6
67	Effect of Aging in Nitrogen and Air on the Properties of Biocrude Produced by Hydrothermal Liquefaction of Spirulina. <i>Energy & Documents</i> 2019, 33, 9870-9878	4.1	8
66	Biocrude Oil Production through the Maillard Reaction between Leucine and Glucose during Hydrothermal Liquefaction. <i>Energy & Fuels</i> , 2019 , 33, 8758-8765	4.1	21
65	Pretreatment of pig manure liquid digestate for microalgae cultivation via innovative flocculation-biological contact oxidation approach. <i>Science of the Total Environment</i> , 2019 , 694, 133720	10.2	17
64	Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment. <i>Green Chemistry</i> , 2019 , 21, 1305-131	$ ilde{8}^{ ext{IO}}$	42
63	Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment. <i>Bioresource Technology</i> , 2019 , 279, 57-66	11	8
62	Fate and transport of estrogenic compounds in an integrated swine manure treatment systems combining algal-bacterial bioreactor and hydrothermal processes for improved water quality. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 16800-16813	5.1	4
61	Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions. <i>Bioresource Technology</i> , 2019 , 284, 139-147	11	40
60	Zeolite-amended microalgal-bacterial system in a membrane photobioreactor for promoting system stability, biomass production, and wastewater treatment efficiency to realize Environmental-Enhancing Energy paradigm. <i>Journal of Applied Phycology</i> , 2019 , 31, 335-344	3.2	6
59	110th Anniversary: Influence of Solvents on Biocrude from Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin, and Their Quinary Mixture. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 13971-13976	3.9	18
58	Hydroponic Lettuce Production Using Treated Post-Hydrothermal Liquefaction Wastewater (PHW). <i>Sustainability</i> , 2019 , 11, 3605	3.6	8
57	Comparative production of biochars from corn stalk and cow manure. <i>Bioresource Technology</i> , 2019 , 291, 121855	11	11
56	Hydrothermal conversion of anaerobic wastewater fed microalgae: effects of reaction temperature on products distribution and biocrude properties. <i>IET Renewable Power Generation</i> , 2019 , 13, 2215-2220)2.9	2

55	Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm. <i>Water (Switzerland)</i> , 2019 , 11, 2546	3	
54	Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. <i>Science of the Total Environment</i> , 2019 , 651, 61-69	10.2	28
53	Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency. <i>Energy</i> , 2019 , 167, 189-197	7.9	46
52	Biohythane production of post-hydrothermal liquefaction wastewater: A comparison of two-stage fermentation and catalytic hydrothermal gasification. <i>Bioresource Technology</i> , 2019 , 274, 335-342	11	23
51	Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction. <i>Science of the Total Environment</i> , 2018 , 635, 70-77	10.2	32
50	Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater. <i>Science of the Total Environment</i> , 2018 , 630, 1124-1132	10.2	45
49	Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process. <i>Environmental Technology (United Kingdom)</i> , 2018 , 39, 74-82	2.6	16
48	Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. <i>Current Opinion in Biotechnology</i> , 2018 , 50, 25-31	11.4	41
47	Performance Evaluation of Mesophilic Anaerobic Digestion of Chicken Manure with Algal Digestate. <i>Energies</i> , 2018 , 11, 1829	3.1	14
46	Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste. <i>Nature Sustainability</i> , 2018 , 1, 702-710	22.1	64
45	Synergistic and Antagonistic Interactions during Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14501-14509	8.3	56
44	Nitrogen Migration and Transformation during Hydrothermal Liquefaction of Livestock Manures. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 13570-13578	8.3	44
43	Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. <i>Bioresource Technology</i> , 2018 , 266, 349-356	11	43
42	Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk. <i>Bioresource Technology</i> , 2017 , 243, 9-16	11	54
41	Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. <i>Energy Conversion and Management</i> , 2017 , 134, 340-346	10.6	75
40	Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. <i>Waste Management</i> , 2017 , 70, 247-254	8.6	45
39	Influence of catalysts on hydrogen production from wastewater generated from the HTL of human feces via catalytic hydrothermal gasification. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 20503-20500000-20505-2050	20511	32
38	Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. <i>Waste Management</i> , 2017 , 68, 120-127	8.6	52

(2015-2017)

37	Algae biomass as a precursor for synthesis of nitrogen-and sulfur-co-doped carbon dots: A better probe in Arabidopsis guard cells and root tissues. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2017 , 174, 315-322	6.7	28
36	Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization. <i>Energy Conversion and Management</i> , 2017 , 141, 420-428	10.6	73
35	Hydrothermal processes for simultaneous bioenergy recovery and destruction of bioactive microconstituents from biosolids. <i>Proceedings of the Water Environment Federation</i> , 2017 , 2017, 329-35	9	1
34	Effect of ash on hydrothermal liquefaction of high-ash content algal biomass. <i>Algal Research</i> , 2017 , 25, 297-306	5	49
33	Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds. <i>Water Science and Technology</i> , 2017 , 2017, 248-2	5 ² 5 ²	14
32	Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. <i>Journal of Applied Phycology</i> , 2016 , 28, 1031-1039	3.2	36
31	Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. <i>Bioresource Technology</i> , 2016 , 199, 220-227	11	46
30	Comparing three methods for photosynthetic bacteria separation and recycling during wastewater treatment. <i>Desalination and Water Treatment</i> , 2016 , 57, 12467-12477		9
29	Towards biohythane production from biomass: Influence of operational stage on anaerobic fermentation and microbial community. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 4429-4438	6.7	69
28	Extract Nitrogen-Containing Compounds in Biocrude Oil Converted from Wet Biowaste via Hydrothermal Liquefaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2182-2190	8.3	26
27	Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology. <i>Environmental Technology (United Kingdom)</i> , 2016 , 37, 775-84	2.6	10
26	Laboratory testing of flat oval transitions to determine loss coefficients (RP-1606). <i>Science and Technology for the Built Environment</i> , 2015 , 21, 386-395	1.8	2
25	Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage. <i>Microbial Ecology</i> , 2015 , 70, 710-23	4.4	16
24	Performance and microbial community of carbon nanotube fixed-bed microbial fuel cell continuously fed with hydrothermal liquefied cornstalk biomass. <i>Bioresource Technology</i> , 2015 , 185, 294	4 - 301	24
23	Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. <i>Bioresource Technology</i> , 2015 , 178, 139-146	11	114
22	Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community. <i>Bioresource Technology</i> , 2015 , 175, 152-9	11	73
21	Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. <i>Water Science and Technology</i> , 2015 , 72, 2139-47	2.2	50
20	Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. <i>Bioresource Technology</i> , 2015 , 184, 328-335	11	86

19	Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products. <i>Bioresource Technology</i> , 2015 , 184, 336-343	11	63
18	Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. <i>Bioresource Technology</i> , 2014 , 152, 130-9	11	247
17	Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. <i>Bioresource Technology</i> , 2014 , 154, 322-9	11	189
16	Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa. <i>RSC Advances</i> , 2014 , 4, 16958	3.7	79
15	Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. <i>Applied Energy</i> , 2014 , 128, 209-216	10.7	146
14	Hydrothermal Liquefaction of Microalgae in an EthanolWater Co-Solvent To Produce Biocrude Oil. <i>Energy & Energy & Energy</i>	4.1	71
13	Hydrothermal liquefaction for algal biorefinery: A critical review. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 38, 933-950	16.2	258
12	Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae. <i>Bioenergy Research</i> , 2014 , 7, 1317-1328	3.1	65
11	Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics. <i>Bioresource Technology</i> , 2014 , 169, 816-820	11	42
10	Moisture effects on gas-phase biofilter ammonia removal efficiency, nitrous oxide generation, and microbial communities. <i>Journal of Hazardous Materials</i> , 2014 , 271, 292-301	12.8	22
9	Analysis of particle-borne odorants emitted from concentrated animal feeding operations. <i>Science of the Total Environment</i> , 2014 , 490, 322-33	10.2	12
8	A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. <i>Energy and Environmental Science</i> , 2013 , 6, 3765	35.4	203
7	Airborne exposure patterns from a passenger source in aircraft cabins. <i>HVAC and R Research</i> , 2013 , 19, 962-73		6
6	Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. <i>Bioresource Technology</i> , 2013 , 133, 389-97	11	119
5	Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. <i>Energy and Environmental Science</i> , 2011 , 4, 4587	35.4	262
4	Product and Economic Analysis of Direct Liquefaction of Swine Manure. <i>Bioenergy Research</i> , 2011 , 4, 324-333	3.1	15
3	Hydrothermal Liquefaction to Convert Biomass into Crude Oil 2010 , 201-232		33
2	An Overview of Room Air Motion Measurement: Technology and Application. <i>HVAC and R Research</i> , 2007 , 13, 929-950		29

Sampling Efficiency of the Tsi Aerodynamic Particle Sizer. *Instrumentation Science and Technology*, **1998**, 26, 363-373

1.4 11