
## Malcolm Burrows

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7844541/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Elucidating the complex organization of neural micro-domains in the locust Schistocerca gregaria<br>using dMRI. Scientific Reports, 2021, 11, 3418.                                                                     | 3.3 | 1         |
| 2  | Jumping in lantern bugs (Hemiptera, Fulgoridae). Journal of Experimental Biology, 2021, 224, .                                                                                                                          | 1.7 | 4         |
| 3  | Do enlarged hind legs of male thick-legged flower beetles contribute to take-off or mating?. Journal of Experimental Biology, 2020, 223, .                                                                              | 1.7 | 3         |
| 4  | Effectiveness and efficiency of two distinct mechanisms for take-off in a derbid planthopper insect.<br>Journal of Experimental Biology, 2019, 222, .                                                                   | 1.7 | 7         |
| 5  | Jumping and take-off in a winged scorpion fly (Mecoptera, <i>Panorpa communis</i> ). Journal of<br>Experimental Biology, 2019, 222, .                                                                                   | 1.7 | 4         |
| 6  | How biomechanics influence animal movements. Current Biology, 2019, 29, R186-R187.                                                                                                                                      | 3.9 | 1         |
| 7  | Jumping performance of flea hoppers and other mirid bugs (Hemiptera, Miridae). Journal of<br>Experimental Biology, 2017, 220, 1606-1617.                                                                                | 1.7 | 10        |
| 8  | Take-off mechanisms in parasitoid wasps. Journal of Experimental Biology, 2017, 220, 3812-3825.                                                                                                                         | 1.7 | 7         |
| 9  | Jumping without slipping: leafhoppers (Hemiptera: Cicadellidae) possess special tarsal structures for jumping from smooth surfaces. Journal of the Royal Society Interface, 2017, 14, 20170022.                         | 3.4 | 17        |
| 10 | Three dimensional reconstruction of energy stores for jumping in planthoppers and froghoppers from confocal laser scanning microscopy. ELife, 2017, 6, .                                                                | 6.0 | 21        |
| 11 | Development and deposition of resilin in energy stores for locust jumping. Journal of Experimental<br>Biology, 2016, 219, 2449-57.                                                                                      | 1.7 | 18        |
| 12 | Increased muscular volume and cuticular specialisations enhance jump velocity in solitarious<br>compared with gregarious desert locusts, Schistocerca gregaria. Journal of Experimental Biology,<br>2016, 219, 635-648. | 1.7 | 14        |
| 13 | Mantises Exchange Angular Momentum between Three Rotating Body Parts to Jump Precisely to<br>Targets. Current Biology, 2015, 25, 786-789.                                                                               | 3.9 | 22        |
| 14 | Jumping mechanisms and strategies in moths (Lepidoptera). Journal of Experimental Biology, 2015, 218,<br>1655-66.                                                                                                       | 1.7 | 19        |
| 15 | Jumping mechanisms in adult caddis flies (Insecta, Trichoptera). Journal of Experimental Biology, 2015,<br>218, 2764-2774.                                                                                              | 1.7 | 14        |
| 16 | Jumping mechanisms in dictyopharid planthoppers ( <i>Hemiptera, Dicytyopharidae</i> ). Journal of<br>Experimental Biology, 2014, 217, 402-13.                                                                           | 1.7 | 14        |
| 17 | Rapid swimming and escape movements in the aquatic larvae and pupae of the phantom<br>midge <i>Chaoborus</i> (Diptera, Chaoboridae). Journal of Experimental Biology, 2014, 217, 2468-79.                               | 1.7 | 10        |
| 18 | Jumping mechanisms in flatid planthoppers (Hemiptera, Flatidae). Journal of Experimental Biology, 2014,<br>217, 2590-600.                                                                                               | 1.7 | 13        |

| #  | Article                                                                                                                                                                                                | IF                 | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 19 | Slowly contracting muscles power the rapid jumping of planthopper insects (Hemiptera, Issidae). Cell<br>and Tissue Research, 2014, 355, 213-222.                                                       | 2.9                | 4            |
| 20 | Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics. Journal of Insect Physiology, 2014, 65, 9-26. | 2.0                | 61           |
| 21 | Jumping mechanisms in lacewings (Neuroptera, Chrysopidae and Hemerobiidae). Journal of<br>Experimental Biology, 2014, 217, 4252-61.                                                                    | 1.7                | 20           |
| 22 | Jumping mechanisms of treehopper insects (Hemiptera, Auchenorrhyncha, Membracidae). Journal of<br>Experimental Biology, 2013, 216, 788-99.                                                             | 1.7                | 21           |
| 23 | Jumping mechanisms in gum treehopper insects ( <i>Hemiptera, Eurymelinae</i> ). Journal of<br>Experimental Biology, 2013, 216, 2682-90.                                                                | 1.7                | 6            |
| 24 | Jumping from the surface of water by the long-legged fly <i>Hydrophorus</i> (Diptera,) Tj ETQq0 0 0 rgBT /Overlo                                                                                       | ck 10 Tf 50<br>1.7 | 0 542 Td (Do |
| 25 | Interacting Gears Synchronize Propulsive Leg Movements in a Jumping Insect. Science, 2013, 341, 1254-1256.                                                                                             | 12.6               | 98           |
| 26 | Pygmy mole crickets jump from water. Current Biology, 2012, 22, R990-R991.                                                                                                                             | 3.9                | 26           |
| 27 | Jumping mechanisms in jumping plant lice (Hemiptera, Sternorrhyncha, Psyllidae). Journal of<br>Experimental Biology, 2012, 215, 3612-21.                                                               | 1.7                | 24           |
| 28 | Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking. Journal of Experimental Biology, 2012, 215, 3501-12.                                                   | 1.7                | 60           |
| 29 | A cockroach that jumps. Biology Letters, 2012, 8, 390-392.                                                                                                                                             | 2.3                | 16           |
| 30 | Biomechanics of jumping in the flea. Journal of Experimental Biology, 2011, 214, 836-847.                                                                                                              | 1.7                | 111          |
| 31 | Epigenetic remodelling of brain, body and behaviour during phase change in locusts. Neural Systems & Circuits, 2011, 1, 11.                                                                            | 1.8                | 30           |
| 32 | Jumping mechanisms and performance of snow fleas (Mecoptera, Boreidae). Journal of Experimental<br>Biology, 2011, 214, 2362-2374.                                                                      | 1.7                | 39           |
| 33 | Microarray-Based Transcriptomic Analysis of Differences between Long-Term Gregarious and Solitarious Desert Locusts. PLoS ONE, 2011, 6, e28110.                                                        | 2.5                | 36           |
| 34 | Antibody Labelling of Resilin in Energy Stores for Jumping in Plant Sucking Insects. PLoS ONE, 2011, 6, e28456.                                                                                        | 2.5                | 19           |
| 35 | Actions of motor neurons and leg muscles in jumping by planthopper insects (hemiptera, issidae).<br>Journal of Comparative Neurology, 2010, 518, 1349-1369.                                            | 1.6                | 12           |
| 36 | Spatiotemporal Receptive Field Properties of a Looming-Sensitive Neuron in Solitarious and Gregarious Phases of the Desert Locust. Journal of Neurophysiology, 2010, 103, 779-792.                     | 1.8                | 33           |

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.<br>Journal of Insect Physiology, 2010, 56, 902-910.                           | 2.0  | 12        |
| 38 | Energy storage and synchronisation of hind leg movements during jumping in planthopper insects<br>(Hemiptera, Issidae). Journal of Experimental Biology, 2010, 213, 469-478. | 1.7  | 37        |
| 39 | Jumping mechanisms and performance of pygmy mole crickets (Orthoptera, Tridactylidae). Journal of<br>Experimental Biology, 2010, 213, 2386-2398.                             | 1.7  | 44        |
| 40 | Jumping performance of planthoppers (Hemiptera, Issidae). Journal of Experimental Biology, 2009, 212, 2844-2855.                                                             | 1.7  | 56        |
| 41 | HOW FLEAS JUMP. Journal of Experimental Biology, 2009, 212, 2881-2883.                                                                                                       | 1.7  | 21        |
| 42 | A single muscle moves a crustacean limb joint rhythmically by acting against a spring containing resilin. BMC Biology, 2009, 7, 27.                                          | 3.8  | 19        |
| 43 | Jumping strategies and performance in shore bugs (Hemiptera, Heteroptera,Saldidae). Journal of<br>Experimental Biology, 2009, 212, 106-115.                                  | 1.7  | 29        |
| 44 | Serotonin Mediates Behavioral Gregarization Underlying Swarm Formation in Desert Locusts.<br>Science, 2009, 323, 627-630.                                                    | 12.6 | 338       |
| 45 | Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects. BMC Biology, 2008, 6, 41.                                      | 3.8  | 131       |
| 46 | Neurons controlling jumping in froghopper insects. Journal of Comparative Neurology, 2008, 507, 1065-1075.                                                                   | 1.6  | 8         |
| 47 | The effect of leg length on jumping performance of short- and long-legged leafhopper insects. Journal of Experimental Biology, 2008, 211, 1317-1325.                         | 1.7  | 44        |
| 48 | Jumping in a wingless stick insect, <i>Timema chumash</i> (Phasmatodea,Timematodea, Timematidae).<br>Journal of Experimental Biology, 2008, 211, 1021-1028.                  | 1.7  | 14        |
| 49 | Jumping behaviour in a Condwanan relict insect (Hemiptera: Coleorrhyncha:Peloridiidae). Journal of<br>Experimental Biology, 2007, 210, 3311-3318.                            | 1.7  | 35        |
| 50 | Anatomy of the hind legs and actions of their muscles during jumping in leafhopper insects. Journal of Experimental Biology, 2007, 210, 3590-3600.                           | 1.7  | 34        |
| 51 | Kinematics of jumping in leafhopper insects (Hemiptera, Auchenorrhyncha,Cicadellidae). Journal of<br>Experimental Biology, 2007, 210, 3579-3589.                             | 1.7  | 48        |
| 52 | Compensatory Plasticity at an Identified Synapse Tunes a Visuomotor Pathway. Journal of<br>Neuroscience, 2007, 27, 4621-4633.                                                | 3.6  | 32        |
| 53 | Neural Control and Coordination of Jumping in Froghopper Insects. Journal of Neurophysiology, 2007, 97, 320-330.                                                             | 1.8  | 41        |
| 54 | Jumping performance of froghopper insects. Journal of Experimental Biology, 2006, 209, 4607-4621.                                                                            | 1.7  | 122       |

4

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Morphology and action of the hind leg joints controlling jumping in froghopper insects. Journal of<br>Experimental Biology, 2006, 209, 4622-4637.                                        | 1.7  | 69        |
| 56 | Obituary Memories of Bob Boutilier in Cambridge. Journal of Experimental Biology, 2004, 207, 1052-1052.                                                                                  | 1.7  | 0         |
| 57 | Projection patterns of posterior dorsal unpaired median neurons of the locust subesophageal ganglion. Journal of Comparative Neurology, 2004, 478, 164-175.                              | 1.6  | 41        |
| 58 | Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust. Journal of Experimental Biology, 2004, 207, 3603-3617.         | 1.7  | 118       |
| 59 | Localisation of Even-skipped in the mature CNS of the locust, Schistocerca gregaria. Cell and Tissue<br>Research, 2003, 313, 237-244.                                                    | 2.9  | 4         |
| 60 | Froghopper insects leap to new heights. Nature, 2003, 424, 509-509.                                                                                                                      | 27.8 | 200       |
| 61 | Proprioceptors monitoring forces in a locust hind leg during kicking form negative feedback loops with flexor tibiae motor neurons. Journal of Experimental Biology, 2003, 206, 759-769. | 1.7  | 4         |
| 62 | Jumping and kicking in bush crickets. Journal of Experimental Biology, 2003, 206, 1035-1049.                                                                                             | 1.7  | 103       |
| 63 | Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria.<br>Journal of Experimental Biology, 2003, 206, 3991-4002.                                   | 1.7  | 155       |
| 64 | Jumping and kicking in the false stick insect <i>Prosarthria teretrirostris</i> : kinematics and motor control. Journal of Experimental Biology, 2002, 205, 1519-1530.                   | 1.7  | 50        |
| 65 | Jumping in a winged stick insect. Journal of Experimental Biology, 2002, 205, 2399-2412.                                                                                                 | 1.7  | 23        |
| 66 | Jumping and kicking in the false stick insect Prosarthria teretrirostris: kinematics and motor control.<br>Journal of Experimental Biology, 2002, 205, 1519-30.                          | 1.7  | 24        |
| 67 | Jumping in a winged stick insect. Journal of Experimental Biology, 2002, 205, 2399-412.                                                                                                  | 1.7  | 7         |
| 68 | The Neuroanatomy of Nitric Oxide–Cyclic GMP Signaling in the Locust: Functional Implications for<br>Sensory Systems. American Zoologist, 2001, 41, 321-331.                              | 0.7  | 11        |
| 69 | The kinematics and neural control of high-speed kicking movements in the locust. Journal of Experimental Biology, 2001, 204, 3471-3481.                                                  | 1.7  | 73        |
| 70 | The kinematics and neural control of high-speed kicking movements in the locust. Journal of Experimental Biology, 2001, 204, 3471-81.                                                    | 1.7  | 44        |
| 71 | Sensory afferents and motor neurons as targets for nitric oxide in the locust. Journal of<br>Comparative Neurology, 2000, 422, 521-532.                                                  | 1.6  | 38        |
| 72 | Sensory afferents and motor neurons as targets for nitric oxide in the locust. Journal of<br>Comparative Neurology, 2000, 422, 521-532.                                                  | 1.6  | 2         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | NADPH diaphorase histochemistry in the thoracic ganglia of locusts, crickets, and cockroaches:<br>Species differences and the impact of fixation. , 1999, 410, 387-397.                                                           |     | 37        |
| 74 | Nitric oxide synthase in the thoracic ganglia of the locust: Distribution in the neuropiles and morphology of neurones. , 1998, 395, 217-230.                                                                                     |     | 39        |
| 75 | Processing of tactile information in neuronal networks controlling leg movements of the Locust.<br>Journal of Insect Physiology, 1997, 43, 107-123.                                                                               | 2.0 | 25        |
| 76 | Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. Journal of Comparative Neurology, 1993, 329, 412-426.                         | 1.6 | 49        |
| 77 | Distribution of acetylcholine receptors in the central nervous system of adult locusts. Journal of<br>Comparative Neurology, 1993, 334, 47-58.                                                                                    | 1.6 | 25        |
| 78 | Local circuits for the control of leg movements in an insect. Trends in Neurosciences, 1992, 15, 226-232.                                                                                                                         | 8.6 | 100       |
| 79 | A Population of ascending intersegmental interneurones in the locust with mechanosensory inputs from a hind leg. Journal of Comparative Neurology, 1988, 275, 1-12.                                                               | 1.6 | 53        |
| 80 | The Physiology and Morphology of Median Nerve Motor Neurones in the Thoracic Ganglia of the<br>Locust. Journal of Experimental Biology, 1982, 96, 325-341.                                                                        | 1.7 | 15        |
| 81 | Interneurones Co-Ordinating the Ventilatory Movements of the Thoracic Spiracles in the Locust.<br>Journal of Experimental Biology, 1982, 97, 385-400.                                                                             | 1.7 | 24        |
| 82 | The morphology and physiology of some walking leg motor neurones in a scorpion. Journal of<br>Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980, 140, 31-42.                              | 1.6 | 17        |
| 83 | Locusts Use the Same Basic Motor Pattern in Swimming as In Jumping and Kicking. Journal of Experimental Biology, 1978, 75, 81-93.                                                                                                 | 1.7 | 51        |
| 84 | How the Locust Dries Itself. Journal of Experimental Biology, 1978, 75, 95-100.                                                                                                                                                   | 1.7 | 12        |
| 85 | The role of delayed excitation in the co-ordination of some metathoracic flight motoneurons of a<br>locust. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral<br>Physiology, 1973, 83, 135-164. | 1.6 | 64        |
| 86 | The morphology of an elevator and a depressor motoneuron of the hindwing of a locust. Journal of<br>Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1973, 83, 165-178.                       | 1.6 | 72        |
| 87 | Physiological and morphological properties of the metathoracic common inhibitory neuron of the<br>locust. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral<br>Physiology, 1973, 82, 59-78.     | 1.6 | 92        |
| 88 | Neural mechanisms underlying behavior in the locustSchistocerca gregaria I. Physiology of identified motorneurons in the metathoracic ganglion. Journal of Neurobiology, 1973, 4, 3-41.                                           | 3.6 | 245       |
| 89 | Neural mechanisms underlying behavior in the locustSchistocerca gregaria. II. Integrative activity in metathoracic neurons. Journal of Neurobiology, 1973, 4, 43-67.                                                              | 3.6 | 55        |
| 90 | Neural mechanisms underlying behavior in the locustSchistocerca gregaria III. Topography of limb motorneurons in the metathoracic ganglion. Journal of Neurobiology, 1973, 4, 167-186.                                            | 3.6 | 168       |

| #  | Article                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | The Mechanism of Rapid Running in the Ghost Crab, <i>Ocypode Ceratophthalma</i> . Journal of Experimental Biology, 1973, 58, 327-349.          | 1.7 | 93        |
| 92 | Neuromuscular physiology of the strike mechanism of the mantis shrimp,Hemisquilla. The Journal of<br>Experimental Zoology, 1972, 179, 379-393. | 1.4 | 45        |
| 93 | Fine structure of muscles controlling the strike of the mantis shrimp,Hemisquilla. The Journal of<br>Experimental Zoology, 1972, 179, 395-415. | 1.4 | 24        |