
JuliÃ;n GarcÃ-a-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7844495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extractive Distillation with Ionic Liquids To Separate Benzene, Toluene, and Xylene from Pyrolysis Gasoline: Process Design and Techno-Economic Comparison with the Morphylane Process. Industrial & Engineering Chemistry Research, 2022, 61, 2511-2523.	1.8	17
2	Technoeconomic Assessment of a Biomass Pretreatment + Ionic Liquid Recovery Process with Aprotic and Choline Derived Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 8467-8476.	3.2	22
3	Tetrathiocyanatocobaltate and bis(trifluoromethylsulfonyl)imide-based ionic liquids as mass agents in the separation of cyclohexane and cyclohexene mixtures by homogeneous extractive distillation. Journal of Chemical Thermodynamics, 2021, 157, 106403.	1.0	5
4	Experimental screening of ionic liquids as mass agents in the n-hexane/1-hexene extractive distillation. Fluid Phase Equilibria, 2021, 549, 113205.	1.4	5
5	Separation of benzene from methylcycloalkanes by extractive distillation with cyano-based ionic liquids: Experimental and CPA EoS modelling. Separation and Purification Technology, 2020, 234, 116128.	3.9	18
6	Experimental and CPA EoS Description of the Key Components in the BTX Separation from Gasolines by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2020, 59, 15058-15068.	1.8	8
7	High pressure density of tricyanomethanide-based ionic liquids: Experimental and PC-SAFT modelling. Fluid Phase Equilibria, 2020, 520, 112652.	1.4	4
8	Enhanced separation of benzene and cyclohexane by homogeneous extractive distillation using ionic liquids as entrainers. Separation and Purification Technology, 2020, 240, 116583.	3.9	46
9	Dearomatization of pyrolysis gasoline by extractive distillation with 1-ethyl-3-methylimidazolium tricyanomethanide. Fuel Processing Technology, 2019, 195, 106156.	3.7	28
10	Ecotoxicity evaluation towards Vibrio fischeri of imidazolium- and pyridinium-based ionic liquids for their use in separation processes. SN Applied Sciences, 2019, 1, 1.	1.5	25
11	Developing a new correlation for the aliphatic and aromatic hydrocarbon diffusion coefficients at infinite dilution in ionic liquids. Journal of Molecular Liquids, 2019, 296, 111857.	2.3	2
12	High-Pressure Density of Bis(1-alkyl-3-methylimidazolium) Tetraisothiocyanatocobaltate Ionic Liquids: Experimental and PC-SAFT with Volume-Shift Modeling. Journal of Chemical & Engineering Data, 2019, 64, 4827-4833.	1.0	3
13	Toward Modeling the Aromatic/Aliphatic Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids Using CPA EoS. Industrial & Engineering Chemistry Research, 2019, 58, 19681-19692.	1.8	11
14	Aliphatic and aromatic hydrocarbon diffusion coefficients at infinite dilution in [emim][DCA] and [4empy][Tf2N] ionic liquids. Journal of Molecular Liquids, 2019, 288, 111082.	2.3	5
15	Cyclohexane/cyclohexene separation by extractive distillation with cyano-based ionic liquids. Journal of Molecular Liquids, 2019, 289, 111120.	2.3	26
16	Insights into Ionic Liquid/Aromatic Systems from NMR Spectroscopy: How Water Affects Solubility and Intermolecular Interactions. ChemPlusChem, 2019, 84, 872-881.	1.3	5
17	Impact of water on the [C4C1im][Ac] ability for the CO2/CH4 separation. Journal of CO2 Utilization, 2019, 31, 115-123.	3.3	8
18	Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cyclohexene separation by liquid-liquid extraction. Journal of Chemical Thermodynamics, 2019, 131, 340-346.	1.0	26

#	Article	IF	CITATIONS
19	Novel Process to Reduce Benzene, Thiophene, and Pyrrole in Gasoline Based on [4bmpy][TCM] Ionic Liquid. Energy & Fuels, 2018, 32, 5650-5658.	2.5	15
20	Experimental screening towards developing ionic liquid-based extractive distillation in the dearomatization of refinery streams. Separation and Purification Technology, 2018, 201, 268-275.	3.9	35
21	Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids, 2018, 260, 37-43.	2.3	298
22	COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture. Separation and Purification Technology, 2018, 190, 211-227.	3.9	67
23	On the volatility of aromatic hydrocarbons in ionic liquids: Vapor-liquid equilibrium measurements and theoretical analysis. Journal of Molecular Liquids, 2018, 250, 9-18.	2.3	13
24	Choline Chloride-Based Deep Eutectic Solvents in the Dearomatization of Gasolines. ACS Sustainable Chemistry and Engineering, 2018, 6, 1039-1047.	3.2	78
25	Toluene/ <i>n</i> -Heptane Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids: Experimental and CPA EoS Modeling. Industrial & Engineering Chemistry Research, 2018, 57, 14242-14253.	1.8	29
26	Extraction of aromatic hydrocarbons from pyrolysis gasoline using tetrathiocyanatocobaltate-based ionic liquids: Experimental study and simulation. Fuel Processing Technology, 2017, 159, 96-110.	3.7	30
27	Extraction and recovery process to selectively separate aromatics from naphtha feed to ethylene crackers using 1-ethyl-3-methylimidazolium thiocyanate ionic liquid. Chemical Engineering Research and Design, 2017, 120, 102-112.	2.7	24
28	New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. Industrial & Engineering Chemistry Research, 2017, 56, 7830-7844.	1.8	18
29	Design of the recovery section of the extracted aromatics in the separation of BTEX from naphtha feed to ethylene crackers using [4empy][Tf2N] and [emim][DCA] mixed ionic liquids as solvent. Separation and Purification Technology, 2017, 180, 149-156.	3.9	43
30	Dearomatization of pyrolysis gasoline with an ionic liquid mixture: Experimental study and process simulation. AICHE Journal, 2017, 63, 4054-4065.	1.8	19
31	Design of the Hydrocarbon Recovery Section from the Extract Stream of the Aromatic Separation from Reformer and Pyrolysis Gasolines Using a Binary Mixture of [4empy][Tf ₂ N] + [emim][DCA] Ionic Liquids. Energy & Fuels, 2017, 31, 1035-1043.	2.5	24
32	Recovery of tyrosol from aqueous streams using hydrophobic ionic liquids: a first step towards developing sustainable processes for olive mill wastewater (OMW) management. RSC Advances, 2016, 6, 18751-18762.	1.7	33
33	Separation of aromatics from n -alkanes using tricyanomethanide-based ionic liquids: Liquid-liquid extraction, vapor-liquid separation, and thermophysical characterization. Journal of Molecular Liquids, 2016, 223, 880-889.	2.3	47
34	A comparative study of pure ionic liquids and their mixtures as potential mass agents in the separation of hydrocarbons. Journal of Molecular Liquids, 2016, 222, 118-124.	2.3	16
35	Vapor–Liquid Equilibria for (n-Hexane, n-Octane, Cyclohexane, or 2,3-Dimethylpentane) + Toluene + {[4empy][Tf2N] (0.3) + [emim][DCA] (0.7)} Mixed Ionic Liquids. Journal of Chemical & Engineering Data, 2016, 61, 2440-2449.	1.0	14
36	Vapor–Liquid Equilibria of <i>n</i> -Heptane + Toluene +1-Ethyl-4-methylpyridinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid. Journal of Chemical & Engineering Data, 2016, 61, 458-465.	1.0	11

#	Article	IF	CITATIONS
37	Dicyanamide-based ionic liquids in the liquid–liquid extraction of aromatics from alkanes: Experimental evaluation and computational predictions. Chemical Engineering Research and Design, 2016, 109, 561-572.	2.7	47
38	Selective recovery of aliphatics from aromatics in the presence of the {[4empy][Tf 2 N] + [emim][DCA]} ionic liquid mixture. Journal of Chemical Thermodynamics, 2016, 96, 134-142.	1.0	33
39	Vapor-liquid equilibria for n-heptaneÂ+Â(benzene, toluene, p-xylene, or ethylbenzene)Â+Â{[4empy][Tf2N] (0.3)Â+Â[emim][DCA] (0.7)} binary ionic liquid mixture. Fluid Phase Equilibria, 2016, 417, 41-49.	1.4	18
40	Vapor–liquid equilibria of {n-heptane+toluene+[emim][DCA]} system by headspace gas chromatography. Fluid Phase Equilibria, 2015, 387, 209-216.	1.4	47
41	Separation of BTEX from a naphtha feed to ethylene crackers using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Separation and Purification Technology, 2015, 144, 54-62.	3.9	35
42	Thermal stability and specific heats of {[bpy][BF4]Â+Â[bpy][Tf2N]} and {[bpy][BF4]Â+Â[4bmpy][Tf2N]} mixed ionic liquid solvents. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1235-1243.	2.0	14
43	Dearomatization of pyrolysis gasolines from mild and severe cracking by liquid–liquid extraction using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Fuel Processing Technology, 2015, 137, 269-282.	3.7	33
44	Use of selective ionic liquids and ionic liquid/salt mixtures as entrainer in a (vapor + liquid) system to separate n -heptane from toluene. Journal of Chemical Thermodynamics, 2015, 91, 156-164.	1.0	21
45	Mixing and decomposition behavior of {[4bmpy][Tf2N]+[emim][EtSO4]} and {[4bmpy][Tf2N]+[emim][TFES]} ionic liquid mixtures. Journal of Chemical Thermodynamics, 2015, 82, 58-75.	1.0	34
46	Selective extraction of toluene from n-heptane using [emim][SCN] and [bmim][SCN] ionic liquids as solvents. Journal of Chemical Thermodynamics, 2014, 79, 266-271.	1.0	70
47	Extraction of benzene, ethylbenzene, and xylenes from n-heptane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids. Fluid Phase Equilibria, 2014, 380, 1-10.	1.4	24
48	Liquid–Liquid Extraction of BTEX from Reformer Gasoline Using Binary Mixtures of [4empy][Tf ₂ N] and [emim][DCA] Ionic Liquids. Energy & Fuels, 2014, 28, 6666-6676.	2.5	50
49	Liquid–Liquid Extraction of Toluene from <i>n</i> -Alkanes using {[4empy][Tf ₂ N] + [emim][DCA]} lonic Liquid Mixtures. Journal of Chemical & Engineering Data, 2014, 59, 1692-1699.	1.0	33
50	Thermal stability and specific heats of {[emim][DCA]+[emim][TCM]} mixed ionic liquids. Thermochimica Acta, 2014, 588, 22-27.	1.2	36
51	Thermal stability, specific heats, and surface tensions of ([emim][DCA]+[4empy][Tf2N]) ionic liquid mixtures. Journal of Chemical Thermodynamics, 2014, 76, 152-160.	1.0	43
52	Liquid–liquid extraction of toluene from n-heptane by {[emim][TCM]+[emim][DCA]} binary ionic liquid mixtures. Fluid Phase Equilibria, 2014, 364, 48-54.	1.4	57
53	Thermal Properties of Cyano-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 2187-2193.	1.0	133
54	Separation of toluene from n-heptane, 2,3-dimethylpentane, and cyclohexane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids as extraction solvents. Separation and Purification Technology, 2013, 120, 392-401.	3.9	57

#	Article	IF	CITATIONS
55	Liquid–Liquid Extraction of Toluene from Heptane Using [emim][DCA], [bmim][DCA], and [emim][TCM] Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 2714-2720.	1.8	155
56	Liquid–liquid extraction of toluene from heptane by {[4bmpy][Tf2N]+[emim][CHF2CF2SO3]} ionic liquid mixed solvents. Fluid Phase Equilibria, 2013, 337, 47-52.	1.4	19
57	Physical Characterization of an Aromatic Extraction Solvent Formed by [bpy][BF ₄] and [4bmpy][Tf ₂ N] Mixed Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 1496-1504.	1.0	37
58	Physical Properties of <i>N</i> -Butylpyridinium Tetrafluoroborate and <i>N</i> -Butylpyridinium Bis(trifluoromethylsulfonyl)imide Binary Ionic Liquid Mixtures. Journal of Chemical & Engineering Data, 2012, 57, 1318-1325.	1.0	72
59	Modelling of Hydrocarbon Solubility in Isomeric Ionic Liquids Using Mathematical Regressions. Separation Science and Technology, 2012, 47, 392-398.	1.3	О
60	Separation of Toluene and Heptane by Liquid–Liquid Extraction Using Binary Mixtures of the Ionic Liquids 1-Butyl-4-methylpyridinium Bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium Ethylsulfate. Journal of Chemical & Engineering Data, 2012, 57, 2472-2478.	1.0	11
61	Physical Properties of Binary and Ternary Mixtures of 2-Propanol, Water, and 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Journal of Chemical & Engineering Data, 2012, 57, 1165-1173.	1.0	53
62	Liquid–liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids. Chemical Engineering Journal, 2012, 180, 210-215.	6.6	65
63	Alkylsulfate-based ionic liquids in the liquid–liquid extraction of aromatic hydrocarbons. Journal of Chemical Thermodynamics, 2012, 45, 68-74.	1.0	34
64	Separation of toluene from n-heptane by liquid–liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent. Journal of Chemical Thermodynamics, 2012, 53, 119-124.	1.0	37
65	Thermophysical Properties of 1-Ethyl-3-methylimidazolium 1,1,2,2-Tetrafluoroethanesulfonate and 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquids as a Function of Temperature. Journal of Chemical & Engineering Data, 2011, 56, 3589-3597.	1.0	48
66	Liquidâ^'Liquid Extraction of Toluene from Heptane Using 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Journal of Chemical & Engineering Data, 2011, 56, 113-118.	1.0	78
67	1-Alkyl-2,3-dimethylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids for the Liquid–Liquid Extraction of Toluene from Heptane. Journal of Chemical & Engineering Data, 2011, 56, 3468-3474.	1.0	34
68	Sulfonate-Based Ionic Liquids in the Liquid–Liquid Extraction of Aromatic Hydrocarbons. Journal of Chemical & Engineering Data, 2011, 56, 3188-3193.	1.0	35
69	Evolution of parochial altruism by multilevel selection. Evolution and Human Behavior, 2011, 32, 277-287.	1.4	93
70	Application of lag-k autocorrelation coefficient and the TGA signals approach to detecting and quantifying adulterations of extra virgin olive oil with inferior edible oils. Analytica Chimica Acta, 2011, 688, 140-145.	2.6	11
71	N-butylpyridinium bis-(trifluoromethylsulfonyl)imide ionic liquids as solvents for the liquid–liquid extraction of aromatics from their mixtures with alkanes: Isomeric effect of the cation. Fluid Phase Equilibria, 2011, 301, 62-66.	1.4	52
72	Quantification of adulterant agents in extra virgin olive oil by models based on its thermophysical properties. Journal of Food Engineering, 2011, 103, 211-218.	2.7	24

#	Article	IF	CITATIONS
73	(Liquid+liquid) equilibrium for the ternary systems {heptane+toluene+1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide} and {heptane+toluene+1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide} ionic liquids. Journal of Chemical Thermodynamics, 2011, 43, 1641-1645.	1.0	23
74	(Liquid+liquid) equilibria in the binary systems (aliphatic, or aromatic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 70	7 Td (hydro 1.0	carbons+1-etł 37
75	Separation of toluene and heptane by liquid–liquid extraction using z-methyl-N-butylpyridinium tetrafluoroborate isomers (z=2, 3, or 4) at T=313.2 K. Journal of Chemical Thermodynamics, 2010, 42, 1004-1008.	1.0	55
76	Solvent Extraction of Toluene from Heptane with the Ionic LiquidsN-Ethylpyridinium Bis(trifluoromethylsulfonyl)imide andz-Methyl-N-ethylpyridinium Bis(trifluoromethylsulfonyl)imide (z= 2, 3, or 4) atT= 313.2 K. Journal of Chemical & Engineering Data, 2010, 55, 4937-4942.	1.0	30
77	Liquidâ^'Liquid Equilibria for the Ternary Systems {Heptane + Toluene + <i>N</i> -Butylpyridinium Tetrafluoroborate or <i>N</i> -Hexylpyridinium Tetrafluoroborate} at <i>T</i> = 313.2 K. Journal of Chemical & Engineering Data, 2010, 55, 2862-2865.	1.0	51
78	Ternary Liquidâ~'Liquid Equilibria Measurement for Hexane and Benzene with the Ionic Liquid 1-Butyl-3-methylimidazolium Methylsulfate at <i>T</i> = (298.2, 313.2, and 328.2) K. Journal of Chemical & Engineering Data, 2010, 55, 258-261.	1.0	66
79	Liquid–liquid equilibria for {hexane+benzene+1-ethyl-3-methylimidazolium ethylsulfate} at (298.2, 313.2) Tj	ETQq1 1 0.1	784314 rgBT
80	Estimation of toxicity of ionic liquids in Leukemia Rat Cell Line and Acetylcholinesterase enzyme by principal component analysis, neural networks and multiple lineal regressions. Journal of Hazardous Materials, 2009, 164, 182-194.	6.5	142
81	Determination of Toluene, <i>n-</i> Heptane, [emim][EtSO ₄], and [bmim][MeSO ₄] Ionic Liquids Concentrations in Quaternary Mixtures by UVâ^'vis Spectroscopy. Industrial & Engineering Chemistry Research, 2009, 48, 4998-5003.	1.8	7
82	Effect of Cationic and Anionic Chain Lengths on Volumetric, Transport, and Surface Properties of 1-Alkyl-3-methylimidazolium Alkylsulfate Ionic Liquids at (298.15 and 313.15) K. Journal of Chemical & Engineering Data, 2009, 54, 1297-1301.	1.0	67
83	Design and optimisation of a filter based on neural networks. Application to reduce noise in experimental measurement by TGA of thermal degradation of 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Sensors and Actuators B: Chemical, 2008, 133, 426-434.	4.0	3
84	A neural network approach based on goldâ€nanoparticle enzyme biosensor. Journal of Chemometrics, 2008, 22, 46-53.	0.7	14
85	Field determination of phenolic compounds in olive oil mill wastewater by artificial neural network. Biochemical Engineering Journal, 2008, 38, 171-179.	1.8	26
86	Modelling of carbon dioxide solubility in ionic liquids at sub and supercritical conditions by neural networks and mathematical regressions. Chemometrics and Intelligent Laboratory Systems, 2008, 93, 149-159.	1.8	41
87	Effect of Relative Humidity of Air on Density, Apparent Molar Volume, Viscosity, Surface Tension, and Water Content of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid. Journal of Chemical & Engineering Data, 2008, 53, 923-928.	1.0	84
88	Volumetric, Transport and Surface Properties of [bmim][MeSO ₄] and [emim][EtSO ₄] Ionic Liquids As a Function of Temperature. Journal of Chemical & Engineering Data, 2008, 53, 1518-1522.	1.0	106
89	Principal Component Analysis/UV Spectroscopy for the Determination of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid and Toluene Concentrations in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2008, 47, 4025-4028.	1.8	10
90	Design and Optimization of a Filter Based on Artificial Neural Network Applied to a Distillation Column. Chemical Product and Process Modeling, 2008, 3, .	0.5	0

#	Article	IF	CITATIONS
91	Quantification of Phenolic Compounds in Olive Oil Mill Wastewater by Artificial Neural Network/Laccase Biosensor. Journal of Agricultural and Food Chemistry, 2007, 55, 7418-7426.	2.4	41
92	Determination of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid and Toluene Concentration in Aqueous Solutions by Artificial Neural Network/UV Spectroscopy. Industrial & Engineering Chemistry Research, 2007, 46, 3787-3793.	1.8	23
93	Thermophysical Properties of 1-Ethyl-3-methylimidazolium Ethylsulfate and 1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 1979-1983.	1.0	155
94	Master curve and time–temperature–transformation cure diagram of lignin–phenolic and phenolic resol resins. Journal of Applied Polymer Science, 2007, 103, 3362-3369.	1.3	13
95	Application of artificial neural network to the determination of phenolic compounds in olive oil mill wastewater. Journal of Food Engineering, 2007, 81, 544-552.	2.7	43
96	Gelation and isoconversional kinetic analysis of lignin–phenol–formaldehyde resol resins cure. Chemical Engineering Journal, 2006, 122, 159-166.	6.6	95
97	Transformation of dynamic DSC results into isothermal data for the curing kinetics study of the resol resins. Journal of Thermal Analysis and Calorimetry, 2006, 86, 797-802.	2.0	20
98	Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresource Technology, 2005, 96, 1013-1018.	4.8	137
99	Kraft Pulping ofEucalyptusglobulus:Â Kinetics of Residual Delignification. Industrial & Engineering Chemistry Research, 2002, 41, 1955-1959.	1.8	10
100	Solvent effects in autocatalyzed alcohol–water pulping. Chemical Engineering Journal, 2002, 87, 157-162.	6.6	61
101	Solubilities of hydroquinone and p-quinone in supercritical carbon dioxide. Fluid Phase Equilibria, 2002, 200, 31-39.	1.4	28
102	Solubilities of Phenol and Pyrocatechol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2001, 46, 918-921.	1.0	65
103	THE EFFECT OF AUTOCATALYZED ETHANOL PULPING ON LIGNIN CHARACTERISTICS. Journal of Wood Chemistry and Technology, 2001, 21, 81-95.	0.9	21
104	PHENOLIC OH GROUP ESTIMATION BY FTIR AND UV SPECTROSCOPY. APPLICATION TO ORGANOSOLV LIGNINS. Journal of Wood Chemistry and Technology, 2001, 21, 387-395.	0.9	30
105	EVALUATION OF A PROTEASE ASSAY BASED ON A NATURAL PROTEIN FOR HEAVY METALS INHIBITION OF ACTIVATED SLUDGE. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2001, 36, 1349-1360.	0.9	Ο
106	Characterization and structural modification of ammonic lignosulfonate by methylolation. Journal of Applied Polymer Science, 2001, 82, 2661-2668.	1.3	102
107	Modelling solubility of solids in supercritical fluids using response surface methodology. Journal of Chemical Technology and Biotechnology, 2000, 75, 245-251.	1.6	13
108	Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Research, 1998, 32, 1355-1362.	5.3	94