Erika von Schneidemesser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7844431/publications.pdf

Version: 2024-02-01

44 papers 3,158 citations

331670 21 h-index 276875 41 g-index

55 all docs 55 docs citations

55 times ranked 4925 citing authors

#	Article	IF	CITATIONS
1	Do new bike lanes impact air pollution exposure for cyclists?—a case study from Berlin. Environmental Research Letters, 2021, 16, 084031.	5.2	7
2	Learning from the COVID-19 lockdown in berlin: Observations and modelling to support understanding policies to reduce NO2 Atmospheric Environment: X, 2021, 12, 100122.	1.4	11
3	Opinion: Papers that shaped tropospheric chemistry. Atmospheric Chemistry and Physics, 2021, 21, 12909-12948.	4.9	4
4	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.	10.0	126
5	APExpose_DE, an air quality exposure dataset for Germany 2010–2019. Scientific Data, 2021, 8, 287.	5. 3	1
6	Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors. Atmospheric Measurement Techniques, 2021, 14, 7221-7241.	3.1	6
7	Prepare Scientists to Engage in Scienceâ€Policy. Earth's Future, 2020, 8, e2020EF001628.	6.3	6
8	How will air quality effects onÂhuman health, crops and ecosystems change in the future?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190330.	3.4	15
9	Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality. Sustainability, 2019, 11, 3991.	3.2	10
10	Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations. Science of the Total Environment, 2019, 688, 691-700.	8.0	62
11	Climate change and air pollution: the connection between traffic intervention policies and public acceptance in a local context. Environmental Research Letters, 2019, 14, 085008.	5. 2	10
12	Impact of vegetative emissions on urban ozone and biogenic secondary organic aerosol: Box model study for Berlin, Germany. Journal of Cleaner Production, 2018, 176, 827-841.	9.3	26
13	Analysis of the distributions of hourly NO ₂ concentrations contributing to annual average NO ₂ concentrations across the European monitoring network between 2000 and 2014. Atmospheric Chemistry and Physics, 2018, 18, 3563-3587.	4.9	16
14	Long-term monitoring of black carbon across Germany. Atmospheric Environment, 2018, 185, 41-52.	4.1	44
15	BAERLIN2014 – stationary measurements and source apportionment at an urban background station in Berlin, Germany. Atmospheric Chemistry and Physics, 2018, 18, 8621-8645.	4.9	5
16	An assessment of perceptions of air quality surrounding the implementation of a traffic-reduction measure in a local urban environment. Sustainable Cities and Society, 2018, 41, 525-537.	10.4	36
17	Top–down quantification of NO emissions from traffic in an urban area using a high-resolution regional atmospheric chemistry model. Atmospheric Chemistry and Physics. 2018. 18. 8203-8225.	4.9	39
18	Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elementa, 2018, 6, .	3.2	167

#	Article	IF	Citations
19	Potential reductions in ambient NO 2 concentrations from meeting diesel vehicle emissions standards. Environmental Research Letters, 2017, 12, 114025.	5.2	18
20	Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .	3.2	172
21	Mixing layer height as an indicator for urban air quality?. Atmospheric Measurement Techniques, 2017, 10, 2969-2988.	3.1	80
22	A survey on the perceived need and value of decision-support tools for joint mitigation of air pollution and climate change in cities. Elementa, $2017, 5, \ldots$	3.2	2
23	Sustainable policyâ€"key considerations for air quality and climate change. Current Opinion in Environmental Sustainability, 2016, 23, 85-91.	6.3	31
24	Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone. Atmospheric Environment, 2016, 135, 59-72.	4.1	20
25	Analysis of longâ€term observations of NO _x and CO in megacities and application to constraining emissions inventories. Geophysical Research Letters, 2016, 43, 9920-9930.	4.0	69
26	BAERLIN2014 $\hat{a} \in ``the influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin. Atmospheric Chemistry and Physics, 2016, 16, 7785-7811.$	4.9	25
27	Building Interfaces That Work: A Multi-stakeholder Approach to Air Pollution and Climate Change Mitigation. Advances in Natural and Technological Hazards Research, 2016, , 65-76.	1.1	1
28	Can somebody clear the air? How air quality and climate change are connected. Climanosco Research Articles, $2016, , .$	0.3	0
29	Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 2015, 15, 8889-8973.	4.9	942
30	An Integrated Assessment Method for Sustainable Transport System Planning in a Middle Sized German City. Sustainability, 2015, 7, 1329-1354.	3.2	21
31	Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area. , 2015, , .		2
32	Chemistry and the Linkages between Air Quality and Climate Change. Chemical Reviews, 2015, 115, 3856-3897.	47.7	315
33	New Directions: Support for integrated decision-making in air and climate policies – Development of a metrics-based information portal. Atmospheric Environment, 2014, 90, 146-148.	4.1	13
34	Air pollution: Clean up our skies. Nature, 2014, 515, 335-337.	27.8	99
35	Global Change and Urban Atmospheres, Introduction. , 2014, , 417-423.		0
36	Air quality and climate – synergies and trade-offs. Environmental Sciences: Processes and Impacts, 2013, 15, 1315.	3.5	24

#	Article	IF	CITATIONS
37	Measurement of loss rates of organic compounds in snow using in situ experiments and isotopically labelled compounds. Polar Research, 2012, 31, 11597.	1.6	3
38	How important is biogenic isoprene in an urban environment? A study in London and Paris. Geophysical Research Letters, 2011 , 38 , n/a - n/a .	4.0	41
39	Toxic metals in the atmosphere in Lahore, Pakistan. Science of the Total Environment, 2010, 408, 1640-1648.	8.0	136
40	Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine. Atmospheric Environment, 2010, 44, 3669-3678.	4.1	29
41	Global comparison of VOC and CO observations in urban areas. Atmospheric Environment, 2010, 44, 5053-5064.	4.1	175
42	Spatial Variability of Carbonaceous Aerosol Concentrations in East and West Jerusalem. Environmental Science & Environmental S	10.0	14
43	Concentrations and sources of carbonaceous aerosol in the atmosphere of Summit, Greenland. Atmospheric Environment, 2009, 43, 4155-4162.	4.1	39
44	A method for the analysis of ultra-trace levels of semi-volatile and non-volatile organic compounds in snow and application to a Greenland snow pit. Polar Science, 2008, 2, 251-266.	1.2	291