
Weiting Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7844228/publications.pdf Version: 2024-02-01

WEITING YU

#	Article	IF	CITATIONS
1	Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chemical Reviews, 2012, 112, 5780-5817.	47.7	1,082
2	Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nature Communications, 2015, 6, 6567.	12.8	440
3	CO ₂ Hydrogenation over Oxideâ€Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity. Angewandte Chemie - International Edition, 2016, 55, 7968-7973.	13.8	261
4	Recent development in the fabrication of self-healing superhydrophobic surfaces. Chemical Engineering Journal, 2019, 373, 531-546.	12.7	200
5	Selective Hydrodeoxygenation of Biomassâ€Derived Oxygenates to Unsaturated Hydrocarbons using Molybdenum Carbide Catalysts. ChemSusChem, 2013, 6, 798-801.	6.8	173
6	Trends in Electrochemical Stability of Transition Metal Carbides and Their Potential Use As Supports for Low-Cost Electrocatalysts. ACS Catalysis, 2014, 4, 1558-1562.	11.2	142
7	Differentiation of O–H and C–H Bond Scission Mechanisms of Ethylene Glycol on Pt and Ni/Pt Using Theory and Isotopic Labeling Experiments. Journal of the American Chemical Society, 2011, 133, 7996-8004.	13.7	107
8	Theoretical and experimental studies of the adsorption geometry and reaction pathways of furfural over FeNi bimetallic model surfaces and supported catalysts. Journal of Catalysis, 2014, 317, 253-262.	6.2	88
9	Designing an Electron-Deficient Pd/NiCo ₂ O ₄ Bifunctional Electrocatalyst with an Enhanced Hydrodechlorination Activity to Reduce the Consumption of Pd. Environmental Science & Technology, 2021, 55, 10087-10096.	10.0	64
10	Selective hydrogenation of 1,3-butadiene on PdNi bimetallic catalyst: From model surfaces to supported catalysts. Journal of Catalysis, 2014, 316, 1-10.	6.2	55
11	Reaction Pathways of Biomassâ€Derived Oxygenates over Metals and Carbides: From Model Surfaces to Supported Catalysts. ChemCatChem, 2015, 7, 1402-1421.	3.7	50
12	Hypercrosslinked polystyrene microspheres with bimodal pore size distribution and controllable macroporosity. Journal of Applied Polymer Science, 2010, 116, 84-92.	2.6	47
13	Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts. Applied Catalysis B: Environmental, 2020, 267, 118371.	20.2	47
14	Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo 2 C) surfaces. Applied Surface Science, 2014, 323, 88-95.	6.1	46
15	Theoretical and Experimental Studies of C–C versus C–O Bond Scission of Ethylene Glycol Reaction Pathways via Metal-Modified Molybdenum Carbides. ACS Catalysis, 2014, 4, 1409-1418.	11.2	45
16	Glycolaldehyde as a Probe Molecule for Biomass Derivatives: Reaction of C—OH and Câ•O Functional Groups on Monolayer Ni Surfaces. Journal of the American Chemical Society, 2011, 133, 20528-20535.	13.7	42
17	CO 2 Hydrogenation over Oxideâ€Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity. Angewandte Chemie, 2016, 128, 8100-8105.	2.0	41
18	Facile treatment tuning the morphology of Pb with state-of-the-art selectivity in CO ₂ electroreduction to formate. Chemical Communications, 2021, 57, 7418-7421.	4.1	34

Weiting Yu

#	Article	IF	CITATIONS
19	Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube. International Journal of Hydrogen Energy, 2019, 44, 16478-16486.	7.1	32
20	Challenges and opportunities in correlating bimetallic model surfaces and supported catalysts. Journal of Catalysis, 2013, 308, 2-10.	6.2	31
21	Comparison of Reaction Pathways of Ethylene Glycol, Acetaldehyde, and Acetic Acid on Tungsten Carbide and Ni-Modified Tungsten Carbide Surfaces. Journal of Physical Chemistry C, 2012, 116, 5720-5729.	3.1	29
22	The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, Î ³ -Al2O3 and TiO2. Applied Catalysis A: General, 2011, 393, 44-49.	4.3	26
23	Optimized pore configuration in solar-driven regenerable adsorbent for organic micro-pollutants removal. Chemical Engineering Journal, 2021, 426, 131244.	12.7	24
24	General Trends in the Partial and Complete Hydrogenation of 1,4 yclohexadiene over Pt–Co, Pt–Ni and Pt–Cu Bimetallic Catalysts. ChemCatChem, 2010, 2, 625-628.	3.7	22
25	Correlating the Surface Chemistry of C ₂ and C ₃ Aldoses with a C ₆ Sugar: Reaction of Glucose, Glyceraldehyde, and Glycolaldehyde on Pd(111). Journal of Physical Chemistry C, 2012, 116, 18891-18898.	3.1	22
26	Enhanced electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on <i>in situ</i> prepared Pd-anchored Ni(OH) ₂ bifunctional electrodes: synergistic effect between H* formation on Ni(OH) ₂ and dechlorination steps on Pd. Catalysis Science and Technology, 2019, 9, 5130-5141.	4.1	18
27	Dispersed copper nanoparticles promote the electron mobility of nitrogen-rich graphitized carbon aerogel for electrochemical determination of 4-nitrophenol. Mikrochimica Acta, 2019, 186, 853.	5.0	17
28	Low-Temperature Hydrogenation and Dehydrogenation of 1,3-Cyclohexadiene on Pt/Ni Bimetallic Catalysts. Chinese Journal of Catalysis, 2010, 31, 955-960.	14.0	10
29	Biomass-derived oxygenate reforming on Pt(111): A demonstration of surface science using d-glucose and its model surrogate glycolaldehyde. Surface Science, 2012, 606, L91-L94.	1.9	10
30	Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces. Surface Science, 2015, 640, 159-164.	1.9	10
31	Highly selective electrocatalytic reduction of CO2 to HCOOH over an in situ derived hydrocerussite thin film on a Pb substrate. Chemosphere, 2022, 291, 132889.	8.2	10
32	Ag-MOF-derived 3D Ag dendrites used for the efficient electrocatalytic reduction of CO2 to CO. Electrochimica Acta, 2022, 403, 139652.	5.2	10