## Artyom Glova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7844065/publications.pdf Version: 2024-02-01



APTYON CLOVA

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Scale-Dependent Miscibility of Polylactide and Polyhydroxybutyrate: Molecular Dynamics Simulations.<br>Macromolecules, 2018, 51, 552-563.                                                                                          | 4.8 | 50        |
| 2  | Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives.<br>International Journal of Molecular Sciences, 2022, 23, 645.                                                                            | 4.1 | 46        |
| 3  | Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins. RSC Advances, 2019, 9, 38834-38847.                                                             | 3.6 | 39        |
| 4  | Poly(lactic acid)â€based nanocomposites filled with cellulose nanocrystals with modified surface:<br>allâ€atom molecular dynamics simulations. Polymer International, 2016, 65, 892-898.                                           | 3.1 | 31        |
| 5  | Evaluation of thermal conductivity of organic phase-change materials from equilibrium and<br>non-equilibrium computer simulations: Paraffin as a test case. International Journal of Heat and Mass<br>Transfer, 2021, 165, 120639. | 4.8 | 30        |
| 6  | Influence of the carbon nanotube surface modification on the microstructure of thermoplastic binders. RSC Advances, 2015, 5, 51621-51630.                                                                                          | 3.6 | 26        |
| 7  | Evaluation of the characteristic equilibration times of bulk polyimides via full-atomic computer simulation. Polymer Science - Series A, 2013, 55, 570-576.                                                                        | 1.0 | 25        |
| 8  | Toward Predictive Molecular Dynamics Simulations of Asphaltenes in Toluene and Heptane. ACS<br>Omega, 2019, 4, 20005-20014.                                                                                                        | 3.5 | 22        |
| 9  | Molecular dynamics simulations of oligoester brushes: the origin of unusual conformations. Soft<br>Matter, 2017, 13, 6627-6638.                                                                                                    | 2.7 | 18        |
| 10 | Computer Simulation of Asphaltenes. Petroleum Chemistry, 2018, 58, 983-1004.                                                                                                                                                       | 1.4 | 18        |
| 11 | How to fold back grafted chains in dipolar brushes. Polymer, 2018, 147, 213-224.                                                                                                                                                   | 3.8 | 12        |
| 12 | Grafting-Induced Structural Ordering of Lactide Chains. Polymers, 2019, 11, 2056.                                                                                                                                                  | 4.5 | 11        |
| 13 | Coarseâ€grained Aâ€graftâ€B model of poly(lactic acid) for molecular dynamics simulations. Journal of<br>Polymer Science, Part B: Polymer Physics, 2018, 56, 604-612.                                                              | 2.1 | 9         |
| 14 | Grafted Dipolar Chains: Dipoles and Restricted Freedom Lead to Unexpected Hairpins. Macromolecules, 2020, 53, 29-38.                                                                                                               | 4.8 | 8         |
| 15 | Asphaltenes as novel thermal conductivity enhancers for liquid paraffin: Insight from in silico<br>modeling. Journal of Molecular Liquids, 2021, , 117112.                                                                         | 4.9 | 8         |
| 16 | Model Carboxyl-Containing Asphaltenes as Potential Acceptor Materials for Bulk Heterojunction Solar Cells. Energy & Fuels, 2021, 35, 8423-8429.                                                                                    | 5.1 | 7         |
| 17 | Computational Modeling of Polylactide and Its Cellulose-Reinforced Nanocomposites. , 2016, , 313-341.                                                                                                                              |     | 4         |
| 18 | Branched <i>versus</i> linear lactide chains for cellulose nanoparticle modification: an atomistic molecular dynamics study. Physical Chemistry Chemical Physics, 2021, 23, 457-469.                                               | 2.8 | 2         |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Combined Use of Atomic Force Microscopy and Molecular Dynamics in the Study of Biopolymer Systems. Polymer Science - Series C, 2021, 63, 256-271. | 1.7 | 2         |