Anders IrbÃack

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7843344/publications.pdf
Version: 2024-02-01

1 Mixed-Symmetry Interacting-Boson-Model States in the NucleiBa140, Ce142, andNd144withN=84. Physical
$1 \quad$ Review Letters, 1984, 53, 2469-2472.
8169
Oligomerization of Amyloid Aî2 16â€" 22 Peptides Using Hydrogen Bonds and Hydrophobicity Forces.Local interactions and protein folding: A three-dimensional off-lattice approach. Journal of Chemical
8 Three-helix-bundle protein in a Ramachandran model. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13614-13618.
$9 \quad$ Hadronic correlation functions in the QCD plasma phase. Physical Review Letters, 1991, 67, 302-305. 88
10 Folding Thermodynamics of Peptides. Biophysical Journal, 2005, 88, 1560-1569. 0.5 82
11 Evidence for nonrandom hydrophobicity structures in protein chains.. Proceedings of the National
Academy of Sciences of the United States of America, 1996, 93, 9533-9538.
12 Enumerating Designing Sequences in the HP Model. Journal of Biological Physics, 2002, 28, 1-15.1.579
13 The acceptance probability in the hybrid Monte Carlo method. Physics Letters, Section B: Nuclear, 4.1 78
Elementary Particle and High-Energy Physics, 1990, 242, 437-443.2.576
The theory of dynamical random surfaces with extrinsic curvature. Nuclear Physics B, 1993, 393, 14 571-600.
7.1 799Folding of a small helical protein using hydrogen bonds and hydrophobicity forces. Proteins:$15 \quad$ Structure, Function and Bioinformatics, 2002, 47, 99-105.$2.6 \quad 73$Dissecting the mechanical unfolding of ubiquitin. Proceedings of the National Academy of Sciences ofthe United States of America, 2005, 102, 13427-13432.

Monte Carlo Study of the Formation and Conformational Properties of Dimers of Â̂242 Variants.

Journal of Molecular Biology, 2011, 410, 357-367. \quad| 50 |
| :--- |
| $24 \quad$ Aggregate Geometry in Amyloid Fibril Nucleation. Physical Review Letters, 2013, 110, 058101. |

Microscopic Mechanism of Specific Peptide Adhesion to Semiconductor Substrates. Angewandte
Chemie - International Edition, 2010, 49, 9530-9533.

27	Comparing the folding freeâ€energy landscapes of Â̂242 variants with different aggregation properties. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2600-2608.	2.6	45
28	Changing the Mechanical Unfolding Pathway of FnIII10 by Tuning the Pulling Strength. Biophysical Journal, 2009, 96, 429-441.	0.5	42
29	Critical properties of the dynamical random surface with extrinsic curvature. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 275, 295-303.	4.1	41
30	The heavy quark potential in SU(2) gauge theory at high temperature. Nuclear Physics B, 1991, 363, 34-64.	2.5	39
31	Distinct phases of free $\hat{I} \pm a ̂ € s y n u c l e i n a ̂ € " A ~ M o n t e ~ C a r l o ~ s t u d y . ~ P r o t e i n s: ~ S t r u c t u r e, ~ F u n c t i o n ~ a n d ~$ Bioinformatics, 2012, 80, 2169-2177.	2.6	38

32 Mutation-induced fold switching among lattice proteins. Journal of Chemical Physics, 2011, 135, 195101. 3.031
Local interactions and protein folding: A model study on the square and triangular lattices. Journal
of Chemical Physics, 1998, 108, 2245-2250.

34 Thermal versus mechanical unfolding of ubiquitin. Proteins: Structure, Function and Bioinformatics,
2006, 65, 759-766.
Folding thermodynamics of three $\hat{\imath} 2$-sheet peptides: A model study. Proteins: Structure, Function and
Bioinformatics, 2004, 56, 110-116.
2.625

Equilibrium simulation of trp-cage in the presence of protein crowders. Journal of Chemical Physics,
$38 \quad 2015,143,175102$.
3.0

25

> Dynamics near a first-order phase transition with the Metropolis and Swendsen-Wang algorithms. 23 Nuclear Physics B, 1991, 358, 231-248.

40 Monte Carlo procedure for protein design. Physical Review E, 1998, 58, R5249-R5252.
2.1

23

41	Coupled foldingâ€"binding versus docking: A lattice model study. Journal of Chemical Physics, 2004, 120, 3983-3989.	3.0	22
42	Hydrogen bonds, hydrophobicity forces and the character of the collapse transition. Journal of Biological Physics, 2001, 27, 169-179.	1.5	20
43	Local Unfolding and Aggregation Mechanisms of SOD1: A Monte Carlo Exploration. Journal of Physical Chemistry B, 2013, 117, 9194-9202.	2.6	20
44	Stability and Local Unfolding of SOD1 in the Presence of Protein Crowders. Journal of Physical Chemistry B, 2019, 123, 1920-1930.	2.6	20
45	The correlation lengths and the order of the phase transition in three-dimensional $Z 3$ symmetric models. Nuclear Physics B, 1990, 329, 263-284.	2.5	18
46	Numerical evidence for a mass gap in three-dimensional SU(2). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 174, 99-103.	4.1	16
47	Unfolding times for proteins in a force clamp. Physical Review E, 2010, 81, 010902.	2.1	16
48	Conformational and aggregation properties of the lâ€" 93 fragment of apolipoprotein Aâ€ł. Protein Science, 2014, 23, 1559-1571.	7.6	16
49	Mechanical Resistance in Unstructured Proteins. Biophysical Journal, 2013, 104, 2725-2732.	0.5	15

50 Peptide folding in the presence of interacting protein crowders. Journal of Chemical Physics, 2016,
3.0

15
144, 175105.
$4.1 \quad 13$
Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 232, 491-497.
13
51 The finite temperature phase transition in four flavour QCD on an 8 $\mathrm{A}-123$ lattice. Physics Letters,

Scaling in Steiner random surfaces. Physics Letters, Section B: Nuclear, Elementary Particle and
4.1

13
High-Energy Physics, 1994, 325, 45-50.

53 Two-State Folding over a Weak Free-Energy Barrier. Biophysical Journal, 2003, 85, 1457-1465.
59 Lattice QCD with small number of flavours. Physics Letters, Section B: Nuclear, Elementary Particle
and High-Energy Physics, 1989, 216, 177-183.
$60 \quad$ Thermodynamics of amyloid formation and the role of intersheet interactions. Journal of Chemical
Physics, 2015, 143, 105104.
Finite-size shifts in simulated protein droplet phase diagrams. Journal of Chemical Physics, 2021, 154,
235101.

```
\begin{tabular}{|c|c|c|c|}
\hline 65 & Measurement of Tc in the scaling region of \((2+1)\)-dimensional SU(2) lattice gauge theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 175, 187-191. & 4.1 & 6 \\
\hline 66 & Protein folding/unfolding in the presence of interacting macromolecular crowders. European Physical Journal: Special Topics, 2017, 226, 627-638. & 2.6 & 6 \\
\hline 67 & Markov modeling of peptide folding in the presence of protein crowders. Journal of Chemical Physics, 2018, 148, 055101. & 3.0 & 6 \\
\hline 68 & The effective string andSU(2) lattice MC data. Zeitschrift FÃ1/4r Physik C-Particles and Fields, 1987, 36, 629-637. & 1.5 & 5 \\
\hline
\end{tabular}
69 Finite-size scaling at phase coexistence. Nuclear Physics B, 1993, 409, 663-683. ..... 2.5 ..... 5

\footnotetext{
71 Measuring the string tension in random surface models with extrinsic curvature. Computer Physics
Communications, 1992, 70, 59-68.
}

Sequence-based study of two related proteins with different folding behaviors. Proteins: Structure,
Function and Bioinformatics, 2003, 54, 8-12.

74 Limitations of field-theory simulation for exploring phase separation: The role of repulsion in a lattice protein model. Journal of Chemical Physics, 2022, 156, 015101.

75 All-Atom Monte Carlo Simulations of Protein Folding and Aggregation. Springer Series in
\begin{tabular}{|c|c|c|c|}
\hline 79 & A random surface representation of Wilson loops in \(Z(2)\) gauge theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 211, 129-131. & 4.1 & 0 \\
\hline 80 & Binary assignments of amino acids from pattern conservation. Protein Engineering, Design and Selection, 1997, 10, 1013-1017. & 2.1 & 0 \\
\hline 81 & Simulations of toy proteins. , 1998, , 143-154. & & 0 \\
\hline 82 & Sequence Design in Coarse-Grained Protein Models. Progress of Theoretical Physics Supplement, 2000, 138, 273-281. & 0.1 & 0 \\
\hline 83 & Effective All-Atom Potentials for Proteins. , 2011, , 111-126. & & 0 \\
\hline 84 & When a foreign gene meets its native counterpart: computational biophysics analysis of two PgiC loci in the grass Festuca ovina. Scientific Reports, 2020, 10, 18752. & 3.3 & 0 \\
\hline 85 & Peptide Folding in Cellular Environments: A Monte Carlo andÂMarkov Modeling Approach. Springer Series on Bio- and Neurosystems, 2019, , 453-466. & 0.2 & 0 \\
\hline
\end{tabular}```

