Xing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/784334/publications.pdf Version: 2024-02-01

XINC CHEN

#	Article	IF	CITATIONS
1	Self-Powered Solar-Blind Photodetector with Fast Response Based on Au(β-Ga ₂ O ₃ Nanowires Array Film Schottky Junction. ACS Applied Materials & Interfaces, 2016, 8, 4185-4191.	8.0	338
2	Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes. Journal of Materials Chemistry C, 2014, 2, 9689-9694.	5.5	172
3	Highly Wavelength-Selective Enhancement of Responsivity in Ag Nanoparticle-Modified ZnO UV Photodetector. ACS Applied Materials & Interfaces, 2017, 9, 5574-5579.	8.0	126
4	Laser-Modified Black Titanium Oxide Nanospheres and Their Photocatalytic Activities under Visible Light. ACS Applied Materials & Interfaces, 2015, 7, 16070-16077.	8.0	122
5	Mechanism of Excellent Photoelectric Characteristics in Mixed-Phase ZnMgO Ultraviolet Photodetectors with Single Cutoff Wavelength. ACS Applied Materials & Interfaces, 2015, 7, 20600-20606.	8.0	90
6	High-Performance Planar-Type Ultraviolet Photodetector Based on High-Quality CH ₃ NH ₃ PbCl ₃ Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 34144-34150.	8.0	71
7	A highly efficient UV photodetector based on a ZnO microwire p–n homojunction. Journal of Materials Chemistry C, 2014, 2, 5005.	5.5	54
8	Avalanche Gain in Metal–Semiconductor–Metal Ga ₂ O ₃ Solar-Blind Photodiodes. Journal of Physical Chemistry C, 2019, 123, 18516-18520.	3.1	50
9	Realization of cubic ZnMgO photodetectors for UVB applications. Journal of Materials Chemistry C, 2015, 3, 313-317.	5.5	46
10	Ultraviolet photodetectors based on wide bandgap oxide semiconductor films. Chinese Physics B, 2019, 28, 048503.	1.4	46
11	Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Progress in Quantum Electronics, 2022, 83, 100397.	7.0	46
12	A high performance self-powered ultraviolet photodetector based on a p-GaN/n-ZnMgO heterojunction. Journal of Materials Chemistry C, 2020, 8, 2719-2724.	5.5	45
13	Investigation of Interface Effect on the Performance of CH ₃ NH ₃ PbCl ₃ /ZnO UV Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 34744-34750.	8.0	40
14	A self-powered solar-blind ultraviolet photodetector based on a Ag/ZnMgO/ZnO structure with fast response speed. RSC Advances, 2017, 7, 13092-13096.	3.6	39
15	Performance enhancement of a self-powered solar-blind UV photodetector based on ZnGa2O4/Si heterojunction via interface pyroelectric effect. Applied Physics Letters, 2021, 118, .	3.3	37
16	Suppressing Auger Recombination in Cesium Lead Bromide Perovskite Nanocrystal Film for Bright Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 9371-9378.	4.6	29
17	Performance improvement of a ZnMgO ultraviolet detector by chemical treatment with hydrogen peroxide. Journal of Materials Chemistry C, 2017, 5, 7598-7603.	5.5	23
18	Responsivity improvement of a packaged ZnMgO solar blind ultraviolet photodetector <i>via</i> a sealing treatment of silica gel. Journal of Materials Chemistry C, 2020, 8, 1089-1094.	5.5	22

XING CHEN

#	Article	IF	CITATIONS
19	Quenching of persistent photocurrent in an oxide UV photodetector. Journal of Materials Chemistry C, 2021, 9, 4039-4045.	5.5	21
20	Performance enhancement of a ZnMgO film UV photodetector by HF solution treatment. Journal of Materials Chemistry C, 2017, 5, 10645-10651.	5.5	16
21	Performance enhancement of a p-Si/n-ZnGa ₂ O ₄ heterojunction solar-blind UV photodetector through interface engineering. Journal of Materials Chemistry C, 2021, 9, 10013-10019.	5.5	14
22	Ultraviolet electroluminescence from a n-ZnO film/p-GaN heterojunction under both forward and reverse bias. Journal of Materials Chemistry C, 2018, 6, 11368-11373.	5.5	13
23	High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition. Nanotechnology, 2021, 32, 475201.	2.6	12
24	Effects of Mg Component Ratio on Photodetection Performance of MgGa ₂ O ₄ Solarâ€Blind Ultraviolet Photodetectors. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	6
25	High Detectivity of Metal–Semiconductor–Metal Ga ₂ O ₃ Solar-Blind Photodetector Through Thickness-Regulated Gain. IEEE Transactions on Electron Devices, 2022, 69, 4362-4365	3.0	4