Marcin W Wlodarski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/784312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CPX-351 induces remission in newly diagnosed pediatric secondary myeloid malignancies. Blood Advances, 2022, 6, 521-527.	5.2	10
2	Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood, 2022, 139, 1039-1051.	1.4	29
3	The rise of Apollo, protector of telomeres. Blood, 2022, 139, 2415-2416.	1.4	1
4	Metformin for treatment of cytopenias in children and young adults with Fanconi anemia. Blood Advances, 2022, 6, 3803-3811.	5.2	4
5	<scp>GATA2</scp> deficiency and <scp>MDS</scp> / <scp>AML</scp> : Experimental strategies for disease modelling and future therapeutic prospects. British Journal of Haematology, 2022, 199, 482-495.	2.5	9
6	Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in <i>RPL35A</i> . Haematologica, 2021, 106, 1303-1310.	3.5	12
7	Androgen derivatives improve blood counts and elongate telomere length in adult cryptic dyskeratosis congenita. British Journal of Haematology, 2021, 193, 669-673.	2.5	20
8	Eltrombopag in children with severe aplastic anemia. Pediatric Blood and Cancer, 2021, 68, e29066.	1.5	11
9	Review of guidelines for the identification and clinical care of patients with genetic predisposition for hematological malignancies. Familial Cancer, 2021, 20, 295-303.	1.9	8
10	Somatic mosaicism in inherited bone marrow failure syndromes. Best Practice and Research in Clinical Haematology, 2021, 34, 101279.	1.7	10
11	Reducedâ€intensity conditioning–based hematopoietic cell transplantation for dyskeratosis congenita: Singleâ€center experience and literature review. Pediatric Blood and Cancer, 2021, 68, e29177.	1.5	9
12	Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome. Bone Marrow Transplantation, 2021, 56, 2732-2741.	2.4	24
13	Diagnostic workâ€up for severe aplastic anemia in children: Consensus of the <scp>North American Pediatric Aplastic Anemia Consortium</scp> . American Journal of Hematology, 2021, 96, 1491-1504.	4.1	14
14	Association of unbalanced translocation der(1;7) with germline GATA2 mutations. Blood, 2021, 138, 2441-2445.	1.4	12
15	Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nature Medicine, 2021, 27, 1806-1817.	30.7	79
16	Liposome-Encapsulated Cytarabine and Daunorubicin (CPX-351) Induces Remission in Newly Diagnosed Pediatric Secondary Myeloid Malignancies. Blood, 2021, 138, 4415-4415.	1.4	0
17	Metformin for Treatment of Cytopenias in Children and Young Adults with Fanconi Anemia. Blood, 2021, 138, 1102-1102.	1.4	1
18	A Novel <i>RPS19</i> -Edited Hematopoietic Stem Cell Model of Diamond-Blackfan Anemia for Development of Lentiviral Vector Gene Therapy. Blood, 2021, 138, 859-859.	1.4	3

#	Article	IF	CITATIONS
19	Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism. Nucleic Acids Research, 2020, 48, 770-787.	14.5	28
20	A Novel Deletion in the RPL5 Gene in a Lebanese Child With Diamond Blackfan Anemia Unresponsive to Steroid Treatment. Journal of Pediatric Hematology/Oncology, 2020, 42, e235-e237.	0.6	0
21	Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Practice and Research in Clinical Haematology, 2020, 33, 101197.	1.7	63
22	DNA Repair Syndromes and Cancer: Insights Into Genetics and Phenotype Patterns. Frontiers in Pediatrics, 2020, 8, 570084.	1.9	42
23	Characterization of the severe phenotype of pyruvate kinase deficiency. American Journal of Hematology, 2020, 95, E281.	4.1	8
24	Diagnosis and treatment of pediatric myelodysplastic syndromes: A survey of the North American Pediatric Aplastic Anemia Consortium. Pediatric Blood and Cancer, 2020, 67, e28652.	1.5	12
25	Favorable outcomes of hematopoietic stem cell transplantation in children and adolescents with Diamond-Blackfan anemia. Blood Advances, 2020, 4, 1760-1769.	5.2	27
26	Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia, 2020, 34, 2673-2687.	7.2	38
27	Genotypeâ€phenotype correlation and molecular heterogeneity in pyruvate kinase deficiency. American Journal of Hematology, 2020, 95, 472-482.	4.1	47
28	The arrival of personalized genomics in bone marrow failure. Haematologica, 2020, 106, 11-13.	3.5	3
29	Loss of the Fanconi anemia–associated protein NIPA causes bone marrow failure. Journal of Clinical Investigation, 2020, 130, 2827-2844.	8.2	8
30	Germline Gain-of-Function <i>JAK3</i> Mutation in Familial Chronic Lymphoproliferative Disorder of NK Cells. Blood, 2020, 136, 9-10.	1.4	9
31	Prevalence of Inherited Predisposition Syndromes in Young Patients with Acute Myeloid Leukemia and Aberrant Karyotype. Blood, 2020, 136, 41-42.	1.4	0
32	RPA1 Gain of Function Causes Human Short Telomere Syndrome with Revertant Somatic Mosaicism. Blood, 2020, 136, 36-37.	1.4	0
33	Azacitidine is effective for targeting leukemia-initiating cells in juvenile myelomonocytic leukemia. Leukemia, 2019, 33, 1805-1810.	7.2	9
34	HNRNPR Variants that Impair Homeobox Gene Expression Drive Developmental Disorders in Humans. American Journal of Human Genetics, 2019, 104, 1040-1059.	6.2	29
35	Impaired human hematopoiesis due to a cryptic intronic GATA1 splicing mutation. Journal of Experimental Medicine, 2019, 216, 1050-1060.	8.5	27
36	A Phenotypic Screening Assay Identifies Modulators of Diamond Blackfan Anemia. SLAS Discovery, 2019, 24, 304-313.	2.7	9

#	Article	IF	CITATIONS
37	Prevalence and management of iron overload in pyruvate kinase deficiency: report from the Pyruvate Kinase Deficiency Natural History Study. Haematologica, 2019, 104, e51-e53.	3.5	46
38	Role of Genetic Evolution and Germline Mutations in SAMD9 and SAMD9L Genes. Blood, 2019, 134, SCI-33-SCI-33.	1.4	1
39	Disease Modeling and Phenotype Rescue Using Inducible Pluripotent Stem Cells from Patients with Diamond-Blackfan Anemia. Blood, 2019, 134, 2496-2496.	1.4	Ο
40	Clinical and mutational spectrum of highly differentiated, paired box 3:forkhead box protein o1 fusion–negative rhabdomyosarcoma: A report from the Children's Oncology Group. Cancer, 2018, 124, 1973-1981.	4.1	14
41	Recurrent somatic mutations are rare in patients with cryptic dyskeratosis congenita. Leukemia, 2018, 32, 1762-1767.	7.2	27
42	Constitutional <i>SAMD9L</i> mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica, 2018, 103, 427-437.	3.5	83
43	Recurring mutations in <i>RPL15</i> are linked to hydrops fetalis and treatment independence in Diamond-Blackfan anemia. Haematologica, 2018, 103, 949-958.	3.5	22
44	Clinical spectrum of pyruvate kinase deficiency: data from the Pyruvate Kinase Deficiency Natural History Study. Blood, 2018, 131, 2183-2192.	1.4	121
45	Molecular approaches to diagnose Diamond-Blackfan anemia: The EuroDBA experience. European Journal of Medical Genetics, 2018, 61, 664-673.	1.3	59
46	Complexities of genetic diagnosis illustrated by an atypical case of congenital hypoplastic anemia. Journal of Physical Education and Sports Management, 2018, 4, a003384.	1.2	12
47	Germline loss-of-function SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes. Blood, 2018, 132, 2309-2313.	1.4	38
48	A functional assay for the clinical annotation of genetic variants of uncertain significance in Diamond-Blackfan anemia. Human Mutation, 2018, 39, 1102-1111.	2.5	9
49	Monosomy 7 in Pediatric Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2018, 32, 729-743.	2.2	32
50	Clonal PIGA mosaicism and dynamics in paroxysmal nocturnal hemoglobinuria. Leukemia, 2018, 32, 2507-2511.	7.2	11
51	GATA2 monoallelic expression underlies reduced penetrance in inherited GATA2-mutated MDS/AML. Leukemia, 2018, 32, 2502-2507.	7.2	48
52	A metabolic interplay coordinated by HLX regulates myeloid differentiation and AML through partly overlapping pathways. Nature Communications, 2018, 9, 3090.	12.8	21
53	Small Molecule Screens Identify CDK8-Inhibitors As Candidate Diamond-Blackfan Anemia Drugs. Blood, 2018, 132, 753-753.	1.4	1
54	Androgen Derivatives Improve Blood Counts and Elongate Telomere Length in Patients with Dyskeratosis Congenita. Blood, 2018, 132, 2585-2585.	1.4	1

#	Article	IF	CITATIONS
55	Opposing Pathogenesis of Germline SAMD9/SAMD9L Variants in Adult Myelodysplastic Syndrome (MDS). Blood, 2018, 132, 4351-4351.	1.4	0
56	5-Azacytidine Is Effective for Targeting Leukemia-Initiating Cells in Juvenile Myelomonocytic Leukemia. Blood, 2018, 132, 4342-4342.	1.4	0
57	Health Related Quality of Life and Fatigue in Patients with Pyruvate Kinase Deficiency. Blood, 2018, 132, 4807-4807.	1.4	1
58	A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism. American Journal of Human Genetics, 2017, 100, 506-522.	6.2	69
59	Childhood cancer predisposition syndromes—A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. American Journal of Medical Genetics, Part A, 2017, 173, 1017-1037.	1.2	200
60	GATA2 deficiency and related myeloid neoplasms. Seminars in Hematology, 2017, 54, 81-86.	3.4	125
61	Introduction: Genetic syndromes predisposing to myeloid neoplasia. Seminars in Hematology, 2017, 54, 57-59.	3.4	6
62	Lymphoblastoid cell lines from Diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Scientific Reports, 2017, 7, 12010.	3.3	19
63	Mutational Spectrum of Fanconi Anemia Associated Myeloid Neoplasms. Klinische Padiatrie, 2017, 229, 329-334.	0.6	13
64	Heterogeneity of GATA2-related myeloid neoplasms. International Journal of Hematology, 2017, 106, 175-182.	1.6	44
65	RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nature Communications, 2017, 8, 2126.	12.8	91
66	Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. Journal of Clinical Investigation, 2017, 127, 1700-1713.	8.2	129
67	Clinical and Molecular Heterogeneity of RTEL1 Deficiency. Frontiers in Immunology, 2017, 8, 449.	4.8	35
68	Diamond-Blackfan Anemia Phenotype Caused By Deficiency of Adenosine Deaminase 2. Blood, 2017, 130, 874-874.	1.4	4
69	GFI136N as a therapeutic and prognostic marker for myelodysplastic syndrome. Experimental Hematology, 2016, 44, 590-595.e1.	0.4	11
70	Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood, 2016, 127, 1387-1397.	1.4	304
71	Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica, 2016, 101, 707-716.	3.5	51
72	Assessment of Hematological Data in a Cohort of European Children with Sickle Cell Anemia Treated with Hydroxyurea: Can European Centers Apply Today the Lessons from the Twitch Study?. Blood, 2016, 128, 2494-2494.	1.4	2

#	Article	IF	CITATIONS
73	Impact of Somatic Mutations on the Outcome of Children and Adolescents with Therapy-Related Myelodysplastic Syndrome. Blood, 2016, 128, 3162-3162.	1.4	3
74	DNA methylation in <i>PRDM8</i> is indicative for dyskeratosis congenita. Oncotarget, 2016, 7, 10765-10772.	1.8	15
75	Functional Consequences of TCAB1 Mutations in Dyskeratosis Congenita. Blood, 2016, 128, 3890-3890.	1.4	Ο
76	Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway. PLoS Genetics, 2015, 11, e1005326.	3.5	18
77	Glucocorticoids improve erythroid progenitor maintenance and dampen <i>Trp53</i> response in a mouse model of Diamond–Blackfan anaemia. British Journal of Haematology, 2015, 171, 517-529.	2.5	18
78	Clonal Mutational Landscape of Childhood Myelodysplastic Syndromes. Blood, 2015, 126, 1662-1662.	1.4	9
79	Molecular Characterization of 140 Patients in the Pyruvate Kinase Deficiency (PKD) Natural History Study (NHS): Report of 20 New Variants. Blood, 2015, 126, 3337-3337.	1.4	4
80	Clonal Mutations and Clonal Hierarchy in Pediatric Myeloid Neoplasms. Blood, 2015, 126, SCI-12-SCI-12.	1.4	0
81	Discrimination of T-cell subsets and T-cell receptor repertoire distribution. Immunologic Research, 2014, 58, 20-27.	2.9	12
82	PGM3 Mutations Cause a Congenital Disorder of Glycosylation with Severe Immunodeficiency and Skeletal Dysplasia. American Journal of Human Genetics, 2014, 95, 96-107.	6.2	148
83	Hemangioblastomas and Neurogenic Polyglobulia. Neurosurgery, 2013, 72, 930-935.	1.1	13
84	Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood, 2012, 119, e96-e99.	1.4	65
85	STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood, 2012, 120, 3048-3057.	1.4	360
86	Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood, 2012, 119, 3578-3584.	1.4	391
87	Unexpected High Frequency of GATA2 Mutations in Children with Non-Familial MDS and Monosomy 7. Blood, 2012, 120, 1699-1699.	1.4	7
88	Recurrent 6pLOH Is the Most Common Somatic Lesion in Refractory Cytopenia of Childhood and Occurs Very Infrequently in Severe Aplastic Anemia. Blood, 2012, 120, 644-644.	1.4	1
89	Characteristics of Diamond Blackfan Anemia Patients with Unknown Genetic Defect. Blood, 2012, 120, 1267-1267.	1.4	0
90	Abnormal promoter DNA methylation in juvenile myelomonocytic leukemia is not caused by mutation in DNMT3A. Blood, 2011, 118, 4490-4491.	1.4	7

#	Article	IF	CITATIONS
91	Fanconi anemia (FA)–associated 3q gains in leukemic transformation consistently target EVI1, but do not affect low TERC expression in FA. Blood, 2011, 117, 6047-6050.	1.4	21
92	SNP array–based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood, 2011, 117, 6876-6884.	1.4	117
93	Clonal drift demonstrates unexpected dynamics of the T-cell repertoire in T-large granular lymphocyte leukemia. Blood, 2011, 118, 4384-4393.	1.4	63
94	Analysis of Ribosomal Protein Genes Associated with Diamond Blackfan Anemia (DBA) In German DBA Patients and Their Relatives. Blood, 2011, 118, 729-729.	1.4	2
95	Mutations of the Spliceosome Complex Genes Occur In Adult Patients but Are Very Rare In Children with Myeloid Neoplasia. Blood, 2011, 118, 2797-2797.	1.4	0
96	Clonotype Switching Indicates Propensity for Clonal Outgrowth From Diverse Components of the T Cell Repertoire In T Cell Large Granular Lymphocyte Leukemia Blood, 2010, 116, 1171-1171.	1.4	0
97	Identification of Novel Mutations In Ribosomal Genes In Patients with Diamond Blackfan Anemia (DBA) In Germany and Genotype-Phenotype Correlation Analysis. Blood, 2010, 116, 2244-2244.	1.4	0
98	Various Abnormalities at Chromosome 7 Carry Distinct Biologic and Prognostic Implications In Myelodysplastic/Myeloproliferative Syndromes and Related Marrow Failures. Blood, 2010, 116, 2744-2744.	1.4	0
99	Tricky B-usiness: hematogones in aplastic anemia. Leukemia and Lymphoma, 2009, 50, 1905-1906.	1.3	1
100	Therapeutic implications of variable expression of CD52 on clonal cytotoxic T cells in CD8+ large granular lymphocyte leukemia. Haematologica, 2009, 94, 1407-1414.	3.5	35
101	Clonotype Analysis of Cytomegalovirus-Specific Cytotoxic T Lymphocytes. Journal of the American Society of Nephrology: JASN, 2009, 20, 344-352.	6.1	21
102	Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood, 2009, 114, 1859-1863.	1.4	260
103	Phenotypic differences between healthy effector CTL and leukemic LGL cells support the notion of antigen-triggered clonal transformation in T-LGL leukemia. Journal of Leukocyte Biology, 2008, 83, 589-601.	3.3	29
104	Alemtuzumab Shows Significant Efficacy in T-LGL Leukemia and Refractory Cases Are Due to GPI-Deficiency of LGL Clones Blood, 2008, 112, 2038-2038.	1.4	1
105	Immunogenetic factors determining the evolution of T-cell large granular lymphocyte leukaemia and associated cytopenias. British Journal of Haematology, 2007, 136, 237-248.	2.5	29
106	Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Experimental Hematology, 2007, 35, 1728-1738.	0.4	51
107	Can Genomic Copy Number Variants Be a Part of Complex Genetic Traits Predisposing to Marrow Failure? Blood, 2007, 110, 106-106.	1.4	0
108	Phosphatidylinositol-3-phosphate kinase pathway activation protects leukemic large granular lymphocytes from undergoing homeostatic apoptosis. Blood, 2006, 107, 4834-4840.	1.4	79

#	Article	IF	CITATIONS
109	Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome. Blood, 2006, 108, 2632-2641.	1.4	84
110	T-large granular lymphocyte leukemia: current molecular concepts. Hematology, 2006, 11, 245-256.	1.5	29
111	Pathophysiology Defined by Altered Signal Transduction Pathways: The Role of JAK-STAT and PI3K Signaling in Leukemic Large Granular Lymphocytes. Cell Cycle, 2006, 5, 2571-2574.	2.6	47
112	Identification of Chromosomal Abnormalities in Healthy Bone Marrow Using 250K SNP Arrays Blood, 2006, 108, 2076-2076.	1.4	1
113	High-Density SNP Arrays Reveals the Possible Presence of Multi-Loci Genetic Predisposition for Myelodysplastic Syndromes (MDS) Blood, 2006, 108, 2643-2643.	1.4	0
114	Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell–receptor restriction in large granular lymphocyte leukemia. Blood, 2005, 106, 2769-2780.	1.4	107
115	Efficient identification of T-cell clones associated with graft-versus-host disease in target tissue allows for subsequent detection in peripheral blood. British Journal of Haematology, 2005, 129, 411-419.	2.5	28
116	Killer immunoglobulin-like receptor genotype in immune-mediated bone marrow failure syndromes. Experimental Hematology, 2005, 33, 1357-1362.	0.4	19
117	Phosphatidylinositol-3-Phosphate Kinase Pathway Activation Protects Leukemic Large Granular Lymphocytes from Undergoing Homeostatic Apoptosis Blood, 2005, 106, 739-739.	1.4	1
118	Immunogenetic Factors Determining Evolution of T-Cell Large Granular Lymphocyte Leukemia and Associated Cytopenias Blood, 2005, 106, 2211-2211.	1.4	0
119	Molecular Analysis of TCR Clonotypes in LGL: A Clonal Model for Polyclonal Responses. Journal of Immunology, 2004, 172, 1960-1969.	0.8	66
120	Shared and individual specificities of immunodominant cytotoxic T-cell clones in paroxysmal nocturnal hemoglobinuria as determined by molecular analysis. Experimental Hematology, 2004, 32, 261-269.	0.4	23
121	Pathologic Clonal CTLResponses - Non Random Nature of the TCR Restriction in LGL Leukemia Blood, 2004, 104, 3241-3241.	1.4	0
122	KIR Gene Distribution in Hematologic Disorders Blood, 2004, 104, 1624-1624.	1.4	8
123	Polarized CTL Responses Detected in Patients with Autoimmune Neutropenia Blood, 2004, 104, 1459-1459.	1.4	8
124	In Search for the Specificity of Clonal CTL in T-LGL Leukemia - Generation of Soluble LGL-Derived T Cell Receptor Blood, 2004, 104, 4645-4645.	1.4	0
125	Efficient Identification of T-Cell Clones Associated with Graft-Versus-Host Disease (GvHD) in Target Tissue for Subsequent Detection in Peripheral Blood Blood, 2004, 104, 2243-2243.	1.4	0
126	Changes in T-cell receptor VB repertoire in aplastic anemia: effects of different immunosuppressive regimens. Blood, 2002, 99, 3668-3675.	1.4	59

#	Article	IF	CITATIONS
127	Spectrum of mutations in the Fanconi anaemia group G gene, FANCG/XRCC9. European Journal of Human Genetics, 2000, 8, 861-868.	2.8	61