Shuang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7843014/publications.pdf Version: 2024-02-01

Shiiang Yiian

#	Article	IF	CITATIONS
1	Advances and challenges for flexible energy storage and conversion devices and systems. Energy and Environmental Science, 2014, 7, 2101.	30.8	767
2	Artificial Protection Film on Lithium Metal Anode toward Long ycleâ€Life Lithium–Oxygen Batteries. Advanced Materials, 2015, 27, 5241-5247.	21.0	439
3	Engraving Copper Foil to Give Largeâ€Scale Binderâ€Free Porous CuO Arrays for a Highâ€Performance Sodiumâ€Ion Battery Anode. Advanced Materials, 2014, 26, 2273-2279.	21.0	427
4	Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy and Environmental Science, 2015, 8, 1660-1681.	30.8	362
5	Tailored Aromatic Carbonyl Derivative Polyimides for Highâ€Power and Long ycle Sodiumâ€Organic Batteries. Advanced Energy Materials, 2014, 4, 1301651.	19.5	319
6	Surfactantâ€Free Aqueous Synthesis of Pure Singleâ€Crystalline SnSe Nanosheet Clusters as Anode for High Energy―and Powerâ€Density Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1602469.	21.0	231
7	SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chemical Communications, 2011, 47, 5205.	4.1	181
8	Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. Chemical Communications, 2011, 47, 4718.	4.1	174
9	Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy and Environmental Science, 2015, 8, 3160-3165.	30.8	155
10	Decorating Waste Cloth via Industrial Wastewater for Tubeâ€Type Flexible and Wearable Sodiumâ€lon Batteries. Advanced Materials, 2017, 29, 1603719.	21.0	131
11	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	18.0	113
12	Pure Singleâ€Crystalline Na _{1.1} V ₃ O _{7.9} Nanobelts as Superior Cathode Materials for Rechargeable Sodiumâ€ion Batteries. Advanced Science, 2015, 2, 1400018.	11.2	110
13	CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery. Energy and Environmental Science, 2013, 6, 2615.	30.8	109
14	Dendritic Niâ€Pâ€Coated Melamine Foam for a Lightweight, Lowâ€Cost, and Amphipathic Threeâ€Dimensional Current Collector for Binderâ€Free Electrodes. Advanced Materials, 2014, 26, 7264-7270.	21.0	103
15	In situ generated FeF 3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano Energy, 2014, 10, 295-304.	16.0	101
16	Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries. Carbon, 2021, 181, 300-309.	10.3	74
17	Green and Facile Fabrication of MWNTs@Sb ₂ S ₃ @PPy Coaxial Nanocables for Highâ€Performance Naâ€ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 493-499.	2.3	66
18	Integrating 3D Flower-Like Hierarchical Cu ₂ NiSnS ₄ with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 9178-9184.	8.0	64

SHUANG YUAN

#	Article	IF	CITATIONS
19	Enhanced gas sensing performance of SnO ₂ <i>/</i> α-MoO ₃ heterostructure nanobelts. Nanotechnology, 2011, 22, 225502.	2.6	63
20	SnO ₂ <i>/</i> WO ₃ core–shell nanorods and their high reversible capacity as lithium-ion battery anodes. Nanotechnology, 2011, 22, 395702.	2.6	59
21	Self-Assembled 3D Hierarchical Porous Bi ₂ MoO ₆ Microspheres toward High Capacity and Ultra-Long-Life Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21781-21790.	8.0	57
22	Nitrogenâ€Doped Grapheneâ€Buffered Mn ₂ O ₃ Nanocomposite Anodes for Fast Charging and High Discharge Capacity Lithiumâ€Ion Batteries. Small, 2019, 15, e1903311.	10.0	44
23	P3-type K _{0.33} Co _{0.53} Mn _{0.47} O ₂ ·0.39H ₂ O: a novel bifunctional electrode for Na-ion batteries. Materials Horizons, 2017, 4, 1122-1127.	12.2	41
24	Conductivity Modulation of 3Dâ€Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahighâ€Current Oxygen Evolution. Advanced Energy Materials, 2021, 11, 2100968.	19.5	40
25	Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures with improved lithium-ion battery performance over wide temperature range. Nano Research, 2015, 8, 1659-1668.	10.4	33
26	Synergistic Effect of SnO ₂ /ZnWO ₄ Core–Shell Nanorods with High Reversible Lithium Storage Capacity. Chemistry - an Asian Journal, 2013, 8, 1530-1535.	3.3	23
27	Metal–Organic-Framework-Derived Cobalt nanoparticles encapsulated in Nitrogen-Doped carbon nanotubes on Ni foam integrated Electrode: Highly electroactive and durable catalysts for overall water splitting. Journal of Colloid and Interface Science, 2022, 606, 38-46.	9.4	23
28	Layered Na2V6O16 nanobelts as promising cathode and symmetric electrode for Na-ion batteries with high capacity. Journal of Alloys and Compounds, 2016, 688, 55-60.	5.5	22
29	Human papillomavirus infection and female infertility: a systematic review and meta-analysis. Reproductive BioMedicine Online, 2020, 40, 229-237.	2.4	22
30	Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries. Materials Letters, 2015, 145, 104-107.	2.6	20
31	Assembly of FeWO4-SnO2 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes. Electrochimica Acta, 2014, 118, 45-50.	5.2	19
32	Structural, magnetic properties of in-plane chemically ordered (Mo2/3R)2AlC (RÂ= Gd, Tb, Dy, Ho, Er and) Tj ETQq	10.0 0 rgB	T /Overlock 1
33	Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability. Science Bulletin, 2014, 59, 2017-2023.	1.7	15
34	Utilization of electroless plating to prepare Cu-coated cotton cloth electrode for flexible Li-ion batteries. Rare Metals, 2021, 40, 400-408.	7.1	15
35	Enhanced magnetostriction of Tb–Dy–Fe via simultaneous ⟔111⟩-crystallographic orientation and -morphological alignment induced by directional solidification in high magnetic fields. Applied Physics Letters, 2020, 116, .	3.3	14

36Synthesis of Ultrathin GeO₂â€"Reduced Graphene Oxide (RGO) Sheets for a Highâ€Capacity
Lithiumâ€Ion Battery Anode. Energy Technology, 2014, 2, 342-347.3.813

SHUANG YUAN

#	Article	IF	CITATIONS
37	Wetting behaviors of molten melt drops on polycrystalline Al2O3 substrates in high magnetic fields. Journal of Materials Science and Technology, 2020, 41, 187-190.	10.7	13
38	A novel layered birnessite-type sodium molybdate as dual-ion electrodes for high capacity battery. Electrochimica Acta, 2020, 363, 137229.	5.2	10
39	Electrodes: Engraving Copper Foil to Give Largeâ€Scale Binderâ€Free Porous CuO Arrays for a Highâ€Performance Sodiumâ€Ion Battery Anode (Adv. Mater. 14/2014). Advanced Materials, 2014, 26, 2284-2284.	21.0	9
40	Instrument to characterize the wetting behavior of molten metal on a solid substrate under high magnetic field. Review of Scientific Instruments, 2019, 90, 063902.	1.3	8
41	The accelerating nanoscale Kirkendall effect in Co films–native oxide Si (100) system induced by high magnetic fields. Journal of Materials Science and Technology, 2020, 46, 127-135.	10.7	8
42	Wetting Transition in a Molten Metal and Solid Substrate System in High Magnetic Fields. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2333-2343.	2.2	7
43	Nucleation and growth mechanism of dendrite-free Ni–Cu catalysts by magneto-electrodeposition for the hydrogen evolution reaction. New Journal of Chemistry, 2022, 46, 5246-5255.	2.8	7
44	Self-Supported Bi ₂ MoO ₆ Nanosheet Arrays as Advanced Integrated Electrodes for Li-Ion Batteries with Super High Capacity and Long Cycle Life. Nano, 2018, 13, 1850066.	1.0	6
45	The anti-tumor effect of OP-B on ovarian cancer in vitro and in vivo, and its mechanism: An investigation using network pharmacology-based analysis. Journal of Ethnopharmacology, 2022, 283, 114706.	4.1	6
46	Hierarchical SnO ₂ Nanosheets Array as Ultralong-Life Integrated Anode for Lithium-Ion Batteries. Nano, 2017, 12, 1750077.	1.0	5
47	Hyperbranched Co ₂ P nanocrystals with 3D morphology for hydrogen generation in both alkaline and acidic media. RSC Advances, 2019, 9, 20612-20617.	3.6	5
48	Prognostic implication of human papillomavirus types in cervical cancer patients: a systematic review and meta-analysis. Infectious Agents and Cancer, 2020, 15, 66.	2.6	5
49	Cu Nanoparticles Supported on Fe3O4@SiO2@N-Doped Carbon Core–Shell Nanocomposites for C–N Coupling Reactions in Water. ACS Applied Nano Materials, 0, , .	5.0	5
50	Photo-controlled exchange bias in CoO@Co–Fe PBA core–shell heterostructures. Journal of Materials Chemistry C, 2021, 10, 244-250.	5.5	5
51	Solid-State Dewetting in Polycrystalline Co Films on Native Oxide Si(100) by Kirkendall Effects. Journal of Physical Chemistry C, 2019, 123, 19572-19578.	3.1	4
52	Effect of crystal orientation on droplet wetting behavior on single-crystal Al2O3 substrates: An experimental study. Physics of Fluids, 2020, 32, .	4.0	3
53	Preparation of Ni2P nanochains with controllable geometry for the hydrogen evolution reaction by application of a high magnetic field. Scripta Materialia, 2022, 219, 114892.	5.2	3
54	Cobalt vacancies assisted ion diffusion in Co ₂ AlO ₄ carbon nanofibers for enhancing lithium battery performance. Dalton Transactions, 2020, 49, 10127-10137.	3.3	2

#	Article	IF	CITATIONS
55	Effects of isomalt on the quality of wheat flour dough and spicy wheat gluten sticks. International Journal of Food Science and Technology, 2022, 57, 2310-2320.	2.7	2
56	High magnetic field-assisted synthesis of a pine-like hyperbranched structure alpha-Fe2O3 for enhanced magnetic properties and photocatalytic activity. Nano Structures Nano Objects, 2022, 31, 100896.	3.5	1