Liming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7842784/publications.pdf

Version: 2024-02-01

47409 58552 9,766 88 49 86 citations h-index g-index papers 92 92 92 16296 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Non-targeted metallomics through synchrotron radiation X-ray fluorescence with machine learning for cancer screening using blood samples. Talanta, 2022, 245, 123486.	2.9	6
2	Nanosafety evaluation through feces: A comparison between selenium nanoparticles and selenite in rats. Nano Today, 2021, 36, 101010.	6.2	25
3	Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)?. Nano Today, 2021, 36, 101037.	6.2	57
4	Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes. Environmental Science: Nano, 2021, 8, 1437-1445.	2.2	2
5	Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nature Nanotechnology, 2021, 16, 708-716.	15.6	153
6	Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics, 2021, 13, .	1.0	8
7	Induced Autophagy of Macrophages and the Regulation of Inflammatory Effects by Perovskite Nanomaterial LaNiO3. Frontiers in Immunology, 2021, 12, 676773.	2.2	3
8	Structure of polymer-capped gold nanorods binding to model phospholipid monolayers. JPhys Materials, 2021, 4, 034004.	1.8	2
9	The Underlying Function and Structural Organization of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for Local Immunomodulation. Nano Letters, 2021, 21, 6005-6013.	4.5	63
10	Biotransformation of soluble-insoluble lanthanum species and its induced NLRP3 inflammasome activation and chronic fibrosis. Environmental Pollution, 2021, 284, 117438.	3.7	3
11	Death Pathways of Cancer Cells Modulated by Surface Molecule Density on Gold Nanorods. Advanced Science, 2021, 8, e2102666.	5.6	13
12	<i>In vivo</i> percutaneous permeation of gold nanomaterials in consumer cosmetics: implication in dermal safety assessment of consumer nanoproducts. Nanotoxicology, 2021, 15, 131-144.	1.6	20
13	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	2.9	51
14	Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives. TrAC - Trends in Analytical Chemistry, 2020, 122, 115721.	5.8	32
15	Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter. Analytical Chemistry, 2020, 92, 975-982.	3.2	24
16	Engineering the Nucleophilic Active Oxygen Species in CuTiO _{<i>x</i>} for Efficient Low-Temperature Propene Combustion. Environmental Science & Environmental Science	4.6	48
17	Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS Nano, 2020, 14, 12854-12865.	7.3	30
18	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	2.2	28

#	Article	IF	CITATIONS
19	Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today, 2020, 34, 100907.	6.2	75
20	Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures. Nanoscale, 2020, 12, 6429-6437.	2.8	17
21	Elucidating the Nature of the Cu(l) Active Site in CuO/TiO ₂ for Excellent Low-Temperature CO Oxidation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7091-7101.	4.0	51
22	Immunological Responses Induced by Blood Protein Coronas on Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2020, 14, 5529-5542.	7.3	82
23	Fast Quantification and Speciation of Selenium in Dietary Supplements through Handheld XRF and Synchrotron Radiation XAS. Atomic Spectroscopy, 2020, 41, 127-130.	0.4	9
24	Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano, 2019, 13, 8680-8693.	7. 3	59
25	Cellular Responses to Exposure to Outdoor Air from the Chinese Spring Festival at the Air–Liquid Interface. Environmental Science & Technology, 2019, 53, 9128-9138.	4.6	9
26	Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington's Disease. ACS Applied Materials & Disease. ACS Applied Materials & Disease. ACS	4.0	101
27	Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance. ACS Nano, 2019, 13, 11488-11499.	7.3	84
28	Correlating Ligand Density with Cellular Uptake of Gold Nanorods Revealed by X-ray Reflectivity. Journal of Nanoscience and Nanotechnology, 2019, 19, 7557-7563.	0.9	4
29	Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core–Shell Nanoparticles. Nano Letters, 2019, 19, 4478-4489.	4.5	49
30	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	1.3	42
31	Immobilized Ferrous Ion and Glucose Oxidase on Graphdiyne and Its Application on One-Step Glucose Detection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2647-2654.	4.0	86
32	Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8436-8442.	4.0	130
33	Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Analytical Chemistry, 2018, 90, 589-614.	3.2	85
34	Uptake and Transformation of Nanomaterials in Biological Systems Studied by Synchrotron Radiation X-ray Techniques Microscopy and Microanalysis, 2018, 24, 342-345.	0.2	0
35	Thermal Unfolding Process of Lysozyme on PEGylated Gold Nanoparticles Reveals Length-Dependent Effects of PEG Layer. Journal of Nanoscience and Nanotechnology, 2018, 18, 5542-5550.	0.9	1
36	Carbonâ€Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1800525.	3.9	161

3

#	Article	IF	Citations
37	Immunological effects of graphene family nanomaterials. NanoImpact, 2017, 5, 109-118.	2.4	14
38	Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials. Small, 2017, 13, 1602855.	5.2	32
39	Multifunctional near-infrared dye-magnetic nanoparticles forÂbioimaging and cancer therapy. Cancer Letters, 2017, 390, 168-175.	3.2	35
40	C ₆₀ (OH) ₂₂ : a potential histone deacetylase inhibitor with anti-angiogenic activity. Nanoscale, 2016, 8, 16332-16339.	2.8	12
41	Gdâ€Hybridized Plasmonic Auâ€Nanocomposites Enhanced Tumorâ€Interior Drug Permeability in Multimodal Imagingâ€Guided Therapy. Advanced Materials, 2016, 28, 8950-8958.	11.1	138
42	Metabolic Characteristics of 16HBE and A549 Cells Exposed to Different Surface Modified Gold Nanorods. Advanced Healthcare Materials, 2016, 5, 2363-2375.	3.9	33
43	Pathophysiologic mechanisms of biomedical nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 30-40.	1.3	14
44	Rapid Degradation and High Renal Clearance of Cu ₃ BiS ₃ Nanodots for Efficient Cancer Diagnosis and Photothermal Therapy <i>in Vivo</i> . ACS Nano, 2016, 10, 4587-4598.	7.3	173
45	Near-Infrared Light-Mediated Gold Nanoplatforms for Cancer Theranostics. Springer Series in Biomaterials Science and Engineering, 2016, , 3-52.	0.7	3
46	Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 945-954.	1.7	46
47	Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano, 2015, 9, 6532-6547.	7.3	246
48	Using Hollow Carbon Nanospheres as a Light-Induced Free Radical Generator To Overcome Chemotherapy Resistance. Journal of the American Chemical Society, 2015, 137, 1947-1955.	6.6	182
49	Bismuth Sulfide Nanorods as a Precision Nanomedicine for <i>in Vivo</i> Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 2015, 9, 696-707.	7.3	503
50	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	5.8	164
51	Gd–Metallofullerenol Nanomaterial Suppresses Pancreatic Cancer Metastasis by Inhibiting the Interaction of Histone Deacetylase 1 and Metastasis-Associated Protein 1. ACS Nano, 2015, 9, 6826-6836.	7.3	64
52	Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials, 2015, 16, 034610.	2.8	149
53	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€Sensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	7.8	194
54	In vivo pharmacokinetic features and biodistribution of star and rod shaped gold nanoparticles by multispectral optoacoustic tomography. RSC Advances, 2015, 5, 7529-7538.	1.7	35

#	Article	IF	CITATIONS
55	Gadolinium(III)-Chelated Silica Nanospheres Integrating Chemotherapy and Photothermal Therapy for Cancer Treatment and Magnetic Resonance Imaging. ACS Applied Materials & Diterfaces, 2015, 7, 25014-25023.	4.0	70
56	Silver nanoparticles impede phorbol myristate acetate-induced monocyte–macrophage differentiation and autophagy. Nanoscale, 2015, 7, 16100-16109.	2.8	61
57	Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Research, 2015, 8, 4024-4037.	5.8	28
58	Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 2015, 9, 181-189.	1.6	159
59	Cytotoxic Potential of Silver Nanoparticles. Yonsei Medical Journal, 2014, 55, 283.	0.9	340
60	Polyhydroxylated Metallofullerenols Stimulate ILâ€1β Secretion of Macrophage through TLRs/MyD88/NFâ€Î°B Pathway and NLRP ₃ Inflammasome Activation. Small, 2014, 10, 2362-2372.	5.2	96
61	Novel Insights into Combating Cancer Chemotherapy Resistance Using a Plasmonic Nanocarrier: Enhancing Drug Sensitiveness and Accumulation Simultaneously with Localized Mild Photothermal Stimulus of Femtosecond Pulsed Laser. Advanced Functional Materials, 2014, 24, 4229-4239.	7.8	130
62	Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicology Letters, 2014, 226, 70-80.	0.4	46
63	Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale, 2014, 6, 3670.	2.8	71
64	Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy. Advanced Functional Materials, 2014, 24, 6922-6932.	7.8	69
65	Size-dependent impact of CNTs on dynamic properties of calmodulin. Nanoscale, 2014, 6, 12828-12837.	2.8	18
66	Fe–salphen complexes from intracellular pH-triggered degradation ofÂFe3O4@Salphen-InIII CPPs for selectively killing cancer cells. Biomaterials, 2014, 35, 1676-1685.	5.7	28
67	Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale, 2013, 5, 8384.	2.8	141
68	Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicology Letters, 2013, 222, 55-63.	0.4	103
69	Morphologically Virusâ€Like Fullerenol Nanoparticles Act as the Dualâ€Functional Nanoadjuvant for HIVâ€1 Vaccine. Advanced Materials, 2013, 25, 5928-5936.	11.1	120
70	Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology, 2013, 313, 49-58.	2.0	59
71	Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes. Journal of the American Chemical Society, 2013, 135, 17359-17368.	6.6	239
72	Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials, 2013, 34, 7117-7126.	5.7	77

#	Article	IF	Citations
73	Short Multiwall Carbon Nanotubes Promote Neuronal Differentiation of PC12 Cells via Upâ€Regulation of the Neurotrophin Signaling Pathway. Small, 2013, 9, 1786-1798.	5.2	52
74	Multiwall Carbon Nanotubes Mediate Macrophage Activation and Promote Pulmonary Fibrosis Through TGFâ€Î²/Smad Signaling Pathway. Small, 2013, 9, 3799-3811.	5.2	121
75	The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Materials, 2012, 4, e32-e32.	3.8	112
76	The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology, 2012, 6, 562-575.	1.6	58
77	Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment. Nano Letters, 2012, 12, 2003-2012.	4.5	282
78	Mesoporous Silicaâ€Coated Gold Nanorods as a Lightâ€Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials, 2012, 24, 1418-1423.	11.1	881
79	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	3.3	839
80	Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. Journal of the American Chemical Society, 2011, 133, 8617-8624.	6.6	258
81	Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. Nano Letters, 2011, 11, 772-780.	4.5	475
82	Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing <i>Caenorhabditis elegans</i> as a Model Organism. Nano Letters, 2011, 11, 3174-3183.	4.5	212
83	Cinnabar is not converted into methylmercury by human intestinal bacteria. Journal of Ethnopharmacology, 2011, 135, 110-115.	2.0	30
84	Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials, 2011, 32, 8291-8303.	5.7	160
85	Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Analytical and Bioanalytical Chemistry, 2010, 396, 1105-1114.	1.9	108
86	Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31, 7606-7619.	5.7	613
87	Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicology Letters, 2010, 199, 288-300.	0.4	56
88	Nuclear-based Metallomics in Metallic Nanomaterials: Nanometallomics. , 2010, , 342-384.		3