Ryo Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7842765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the Sodiumâ€Storage Mechanism of Nanosized Disodium Rhodizonate as the Anode Active Material. Advanced Sustainable Systems, 2022, 6, .	5.3	0
2	High capacity all-solid-state lithium battery enabled by <i>in situ</i> formation of an ionic conduction path by lithiation of MgH ₂ . RSC Advances, 2022, 12, 10749-10754.	3.6	10
3	A Trifluoroacetate-based Concentrated Electrolyte for Symmetrical Aqueous Sodium-ion Battery with NASICON-type Na ₂ VTi(PO ₄) ₃ Electrodes. Electrochemistry, 2021, 89, 415-419.	1.4	10
4	Allâ€Solidâ€State Chlorideâ€Ion Battery with Inorganic Solid Electrolyte. ChemElectroChem, 2021, 8, 4441-4444.	3.4	12
5	The <i>in situ</i> formation of an electrolyte <i>via</i> the lithiation of Mg(BH ₄) ₂ in an all-solid-state lithium battery. Chemical Communications, 2021, 57, 2605-2608.	4.1	6
6	Enhanced electrochemical performance of Li _{2.72} Na _{0.31} MnPO ₄ CO ₃ as a cathode material in "water-in-salt―electrolytes. Chemical Communications, 2021, 57, 12840-12843.	4.1	2
7	Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 26452-26458.	2.8	18
8	Cathode Properties of Na3FePO4CO3 Prepared by the Mechanical Ball Milling Method for Na-ion Batteries. Scientific Reports, 2020, 10, 3278.	3.3	15
9	Effect of Iron Addition on Bromination Reaction of Silicon. Journal of the Japan Society of Material Cycles and Waste Management, 2019, 30, 73-79.	0.0	0
10	Prussian Blueâ€Type Electrodes: Over 2 V Aqueous Sodiumâ€lon Battery with Prussian Blueâ€Type Electrodes (Small Methods 4/2019). Small Methods, 2019, 3, 1970010.	8.6	2
11	Cathode Properties of Na3MnPO4CO3 Prepared by the Mechanical Ball Milling Method for Na-Ion Batteries. Energies, 2019, 12, 4534.	3.1	8
12	Over 2 V Aqueous Sodiumâ€ion Battery with Prussian Blueâ€Type Electrodes. Small Methods, 2019, 3, 1800220.	8.6	94
13	Na ₂ FePO ₄ F Fluorophosphate as Positive Insertion Material for Aqueous Sodiumâ€lon Batteries. ChemElectroChem, 2019, 6, 444-449	3.4	27
14	Effect of Concentrated Electrolyte on Aqueous Sodium-ion Battery with Sodium Manganese Hexacyanoferrate Cathode. Electrochemistry, 2017, 85, 179-185.	1.4	106